BIGRAM 8/32

A Complete Zorro Il PIC
Design Example

Document Revision 1.10

1991 DevCon Release

by Dave Haynie
July 18, 1991
Copyright © 1991 Commodore-Amiga, Inc.

| MPORTANT |NFORMATION

"We don’t know a millionth of one percent about anything."
-Thomas Alva Edison

This Document Contains Preliminary Information

The information contained here, while a honest attempt to illustrate a good Zorro Il card design,
is still preliminary in nature and subject to possible errors and omissions. We don’t expect any
problems with this design, but it's only responsible to supply you with this caveat.

Commodore Technology reserves the right to correct any mistake, error, omission, or viscious
lie. Corrections will be published as updates to this document, which will be released as
necessary in as developer-friendly a manner as possible. Revisions will be tracked via the
revison number that appears on the front cover.

All information herein is Copyright © 1991 by Commodore-Amiga, Inc.,
and may not be reproduced in any form without permission.

BIGRAM 8/32 [

TABLE OF CONTENTS

CHAPTER L

11
1.2
1.3

CHAPTERZ2

2.1
2.2
2.3
2.4

CHAPTER 3

3.1

3.11
3.1.2
3.1.3
3.2

3.2.1
3.2.2
3.2.3

CHAPTER 4

4.1
4.2

INTRODUCTION

INTENAEA AUIENCE. ... e, 1-1

A Few Words About AUTOCONFIG.......coneeeeeeeeeeeeeeeeeeaaa, 1-2

Design Example GOalsS..........coooiiiiiiiiiiiiiee e 1-2

AuTtocoNFI® Loacic DESIGN

BUS BUT OIS e 2-1

The AUTOCONFIG ROM. ..., 2-2

The AUTOCONFIG REQISLEIS.uiiiiiiieeeeeeeeeeeeeeeitiie e 2-4

The SLAVE LOGIC. ..ot 2-5

Memory SysTem DESIGN

DRAM REITESN....ceeeeeeeeee e 3-1
Refresh ArDitration.c.oeeeeee e 3-2
RefreSN COUNLEY. ... 3-2
RefreSh CyCle... oo 3-3

(D] R AN A I A o o <11 PP 3-4
MEMOTY CYCIE... .o 3-5
BaNK SEIBCHON. ... 3-5
Address MUItIPIEXING.......ccooiiiiiiiiiiiie e 3-6

GoING FURTHER

Designed-In ENhanCemMENtS..........oooiiiiiiiiiiiiiiieee e 4-1

MOAIfICALION IABAS. e 4-2

BIGRAM 8/32 iii

42.1
4.2.2
4.2.3

CHAPTER 5

5.1
5.2
5.3
5.4

APPENDICES

Al
Al1l
A.l.2
A.1.3
Al4
A.l5
A.2
A.3

Tighter RAM CYCIES... ..o 4-2
Read/Write OptimiZations...........cooivviiiiiiiiiiaieee e e 4-3
Standard DRAM TriCKS.ccooiiiiie e 4-3

ApbiTiIoNAL Zorro Il A bvicE

Watch Those Synchronizations!..............ceoiiiiiiiiieiiiiiee e 5-1
DeSIgN fOr SPEEU.coeeeiiiiiiee e 5-2
Watch Out For Noisel.............. L 5-2
Follow the Specifications.............ouvuiiiiiiiii e 5-3
PAL EQUALIONS.eeiiiiiieee e e e A-1
Autoconfiguration Control PAL..........ccooviiriiiiiiiiieen A-2
Board Control PAL.........ooo i A-4
Memory TIMING PAL.....oooiii e A-6
CAS CONIOI PAL.....eiieeeeeee e A-8
Refresh Counter PAL..... oo A-10
SCREMALICS. ... A-12
Z0rro 1 ConfigUIatiON.......cooii i A-18

TABLES AND FIGURES

Table 2-1Logical AUTOCONFIG REQISIEIS.ccceeieiiiiiiiiieeiiiiiiee e eeeeeeeeeees 2-2

Table 2-2Physical ROM REQISIEIS.ccoo i 2-3
Figure 3-1Refresh Arbitration............e oo 3-2
Figure 3-2RefreSh CYCIe. ... 3-3
FIQUIE 3-3MEMOIY ACCESS.cceiiiieeeieeitittti e e e e e e e e e e e e e e e e eeeetaaatba s e e e e e e e eaeaeaeeeeeeeesssnnnnns 3-4

BIGRAM 8/32 v

Vi

CHaAPTER 1
INTRODUCTION

"The curtain rises on a vast primitive wasteland,
not unlike certain parts of New Jersey."
-Woody Allen

_® sections of a PIC de5|gn The S|gnals and de5|gn problems for the Zorro
lll bus are substantlally different than for Zorro 1. Zorro Il PICs are expected to run
considerably faster than those for Zorro Il, leading the circuit designer to faster TTL logic
families and more use of fast PAL devices. The additional speeds coupled with 32-bit buses
will also lead the circuit board designer to multi-layer boards and more critical routing problems.
While the Zorro Il bus and most Zorro Il designs are mainly synchronous, the Zorro Il bus is
asynchronous. Zorro 1l designs will typically be either fully asynchronous or self-clocked
synchronous with proper attention to stable synchronization with the bus.

®

If past history is any indication, the first thing to mention about Zorro Il PIC design is
AUTOCONFIG®, the Amiga mechanism for linking hardware plug-ins with software such that
configuration jumpers for addresses are unnecessary, and device driver installation is trivial to
even a novice user. And the first thing to say to a hardware designer about AUTOC®MNFIG
Don’t Panic More than any other issue, the AUTOCONPRIGystem seems to have confused
Zorro Il PIC designers. But there’s absolutely nothing to fear about AUTOCORFiItGs a
very simple concept and very simple to implement as an integral part of any PIC’s design.

The concept of configuration hasn’t changed for Zorro Ill, and the implementation is very

BIGRAM 8/32 1-1

1-2

much the same as for the Zorro Il bus. Extensions have been provided for a few Zorro Il
advanced features, and a few extra things were added to the specification to make the design of a
32 bit PIC as easy as possible. Other than that, if you know Zorro Il configuration, you'll pick

up Zorro llIl configuration almost instantly. Chapter 2 walks through the creation of an
AUTOCONFIG® circuit for Zorro Il and discusses the basic logic likely to be in place on any
Zorro 1l card.

1.3 Design Example Goals

The goal of this example is to design a memory card for the Zorro Il bus. While A3000
users won't be running out of motherboard memory (up to 18 Megabytes) quite as fast as A2000
users did, there’s already an emerging need for massive memory in Amiga computers. This
RAM card meets the following goals:

* Provides a fully asynchronous design example

» Uses the same ZIP memories as the A3000

» Supports up to 8 Megabytes using 256K DRAMSs, up to 32 Megabytes
with 1M X 4 DRAMSs.

» Hopefully functions as a realtively clear design example

And, of course, this is a fully functional design tested to the best of our ability at the time of
this writing.

Chapter 1: Introduction

CHAPTER 2
AUTOCONFIG® LOGIC DESIGN

"Logic is in the eye of the logician."
-Gloria Steinem

‘ _.® circuit. While such logic can pretty much be created by rote, an optimal design
always WI|| incorporate the AUTOCONFIGand other Zorro 11l bus logic naturally into the
main design. While this chapter concentrates on the AUTOCORHRdGic, it will cover all of

the standard logic elements of any Zorro Ill design in a sensible order.

Throughout this and the following chapters, references to the schematic pages in Appendix 2 will
be. Page one of the schematics is found on page A-13 of this document, and there are six
schematic pages. To make things simpler, these will be referred to as S-1 through S-6.

2.1 Bus Buffers

Just like with Zorro 11, all Zorro 11l designs require a number of buffers on the bus logic
signals. No PIC may load any bus signal with more than two F-series equivalent gates, and of
course outputs from the PIC must be able to drive the bus properly. Any unbuffered signal used
by a PIC mut be used close to the bus connector; if a signal trace is longer than a few inches, it
must be buffered. In addition, due to the dynamic nature of the high-order Zorro 1ll address
lines, some or all of these address lines must be latched for the duration of the bus cycle.

The buffering/latching arrangement is shown on S-1. Since this is a slave-only board,
address lines are input-only. Addresses-As are transparently latched by 74F373 parts, the

BIGRAM 8/32 2-1

2-2

latch taking place when /FCS is negated. The transparent latching allows the address comparator
to take advantage of the bus’s address setup time, important for matching to the board’s assigned
address as quickly as possible. The circuitry shown here is the most straightforward, but in
operation, only As+-A2 are actually used once the board select is determined. Thus, a fast enough
comparator circuit can latch an address match rather than the high-order addresses if it saves on
circuit complexity. Since the low order addresses A7-A2 are static, they are simply buffered
coming into the RAM board. The extra buffers in that package are used in this design to buffer
/[FCS and READ, two lines used in several places in this design.

Data buffering is quite simple; £2Do are buffered with bidirectional bus buffers. The
data direction and buffer enable signals are quite simple. The buffers point out toward the bus
for read cycles when the PIC is selected (/SLAVE asserted), in at all other times; this function is
contained in the U200 PAL. The output enable is asserted when the PIC is selected, the DOE
signal is asserted, and there’s no bus error; this function is contained in the U201 PAL. Because
the data bus tristates, | use centering resistors to keep it quiet when it's not being driven. If this
design had been supporting Zorro Il as well as Zorro 1ll, an additional two data buffers and much
more complicated buffering logic, based on the SENSEZ3 line, would be required.

2.2 The AUTOCONFIG® ROM

Reg Bit Val Description
00 7,6 10 This indicates a Zorro Il card.
5 1 The OS will link this as free memory.
4 0 No autoboot/diagnostic ROM.
3 0 Only one logical PIC here.
2-0 001 Using the extended size feature, this is a 32 megabyte board.
04 7-0 01010111 Commodore Product $53.
08 7 1 Hint to the OS that this is memory, not I/O
6 0 This board can be shut up.
5 1 Extended sizing being used here.
4 1 This must be 1, for 1.3 compatibility.
3-0 0001 Let the OS calculate the logical size of the memory.
ocC 7-0 00000000 Reserved.
10 7-0 00000010 Manufacturer’s number, high byte.
14 7-0 00000010 Manufacturer’s number, low byte. Since this one is a Commodore board, it uses the
Commodore number.
18-3C 7-0 00000000 All of these are zeroed. This board does not contain a board serial number or
boot/diagnostic ROM.
40 7-0 N/A Reserved
44 15-0 CFGADDR This board uses the Zorro Il configuration block. It accepts the configuration address as
a single write.
48 7-0 N/A Configuration is completely handled with register 44.
4C 7-0 N/A A write of any value will cause the board to shut up.
50-7C 7-0 N/A All remaining registers are reserved.
Table 2-1: Logical AUTOCONFIGRegisters

The complete AUTOCONFIGROM is implemented in PAL U200, shown on schematic
page S-2. The design of an AUTOCONRI®OM is usually very simple, but it does require a
complete understanding of how the board is to be used by the system before it can be done.
Also, a Zorro 11l configuration ROM is similar to a Zorro 1l configuration ROM, with just a few
more options available, once the translation for the configuration space chosen is applied.

First of all, the board must be described. Obviously, this is a Zorro IIl memory board,
and since it's my design, it's also from Commodore. On top of that, it can be expanded up to 32

Chapter 2: AUTOCONFI@Logic Design

megabytes, and it can also be "shut up" if necessary. That's pretty much the specification, now it
has to be translated into Zorro Il ROM registei®e Zorro Il Bus Specificatiodescribes these
entries starting on page 8-1. The logical register assignments are illustratedlan 2-1 The

table actually listsll of the configuration registers on the board (registers 40-7Gre reserved

as write registers, not read registers, but they’re mentioned here anyway).

The next step in the design process is to convert these bit assignments to actual logic. As
mentioned before, the configuration ROM is implemented as part of the U200 PAL. By design,
configuration ROMSs fit nicely in a PAL in most cases. The Zorro Il and Zorro Il specifications
call for all read resgisters other than regi€i8to be inverted in their physical implementation.

Since most bits are logically "0", they’ll be physically "1", and "1" is the default output state of a
standard PAL. Also taking into account that each logical register is actually made up of two
physical registers, both of which assert data only on tkells nybble, the physical register
mapping for all read registers is shownTiable 2-2 The actual PAL equations for this are on

Address Bi Dz D2 Dszs
00 1 0 1 0
02 0 0 0 1
04 0 1 1 0
06 1 1 0 1
08 0 1 0 0
0A 1 1 1 0
12 1 1 0 1
16 1 1 0 1

OTHERS 1 1 1 1

Table 2-2: Physical ROM Registers

page A-3. These are simply a set of equations, one for each data line, that take into account each
"0" in the above table, and are active only when the board is selected and not yet configured.

While it makes no difference to the equations for our ROM registers, it is a good idea to
point out here the differences in addressing these read registers. Zorro Il boards must respond to
the configuration space $00E8xxxx, and all registers are mapped on word boundaries. Zorro I
boards can respond to the $00E8xxxx address as a 16-bit Zorro Il device as well, but many
designs, including this one, will choose instead to respond to the Zorro Ill configuration space at
$FFO0xxxx. A board responds to this address as a 32-bit device, and it actually need only
decode the high-order eight bits of this address; both of these facts can save considerably on the
amount of configuration logic necessary for some designs. In both configurations, the first
nybble of each register pair is at the offset from base address given by that register number. In
the Zorro Il space, the second nybble is in the next logical word -- the register number plus two.
Zorro lll instead maps the second register of the pair at $100 plus the register number. This may
sound like the two will be quite different in implementation, but as the example PAL U200
illustrates, if | map A& as A in the equations, all ROM equations will be written the same for

BIGRAM 8/32 2-3

2-4

either configuration space. Using this feature and a multiplexsadd A based on the
SENSEZ3 signal can help simplify the design of a card that adjusts to both Zorro Il and Zorro 1l
buses.

2.3 The AUTOCONFIG® Registers

This design supports two writable configuration registers, the 16-bit configuration
address registet4 and the shutup registe&C. Recall that configuration address registers are
written in a pattern that allows the designer to choose nybble- or byte-wide configuration latches
for Zorro Il configuration space or byte- or word-wide configuration latches in Zorro Il
configuration space. Since Zorro Il space is only sixteen bits wide and writes must line up
consistently, this design would have to latch configuration address bit&A on a write to
register44, followed by configuration address bits2A16 on a write to registed8. Even
though a large board such as this never needs to look®af# for its configuration address
(Zorro 1l PICs always live at their natural boundaries), a board configured in Zorro Il
configuration space isn’'t configured until a write to regis#8. Since this board instead
responds to Zorro Ill configuration space, the entire sixteen bit configuration address can be
written at once with a write to registdd, and that is also the signal indicating that configuration
of the board is complete.

The register logic starts with the same PAL, U200, as used for our ROM logic. This PAL
has the important low-order addresses going to it, so it's a natural for this. In this design, there
are two signals created for register support in PAL U200. The first of these is a signal called
/PRECON, for pre-configuration. The board isn't fully configured until the end of the Zorro Il
cycle that writes either registel4 or register4C; /PRECON is asserted during this last write
cycle as soon as data is valid on the bus, and it stays latched until the next reset. The other signal
in U200 that's of immediate importance is the CFGLT signal. This line is responsible for
latching the configuration address on the bus if this final write is a configuration and not a "shut
up" request. This is an active high signal in an inverted-output PAL, so the equation can't be
very complicated. This line is asserted when the board is selected, /PRECON is asserted, and A
is low, which is true just after /PRECON is asserted for a writd4o Like the /PRECON line,
CFGLT latches until the next reset. The remainder of the register logic is elsewhere.

The rest of the configuration control logic is in PAL U201, which creates both the
/CFGOUT and /SLAVE signals, two signals that must be driven out to the backplane. The
/ICFGOUT signal is pretty simple. Normally, it is asserted at the end of a cycle in which
/PRECON and /CFGIN are asserted, and latched asserted as long as PRECON also stays
asserted. It also gets asserted if /CFGIN is asserted along with the SENSEZ3 signal negated.
This latter condition indicates that the board has been placed in a Zorro Il backplane. This board
can’t support Zorro Il configuration, so it automatically "shuts up"”, an action required by the
Zorro 1l specification. Note that the SENSEZ3 signal is called /Z2SHUNT in the PAL
equations on page A-5.

The next basic piece of the configuration logic is the configuration latch, which in this
case is the 74F374 at U202. This edge-triggered latch is triggered by the rising edge of CFGLT,

Chapter 2: AUTOCONFI@Logic Design

which is asserted when the board’s configuration address is written and data is valid on the data
bus. At the end of the configuration address cycle, /ICFGOUT is asserted, the address as latched
is now fed into the /SLAVE generation address comparator, and the board is fully configured in
hardware. Since this is an autosized memory board, system software generally will calculate its
size and link it into the free memory pool before the next board is configured, though this
operation can of course change as the configuration software changes.

2.4 The SLAVE Logic

Naturally, this brings up the question of how the /SLAVE logic is implemented. Every
Zorro Il or Zorro Il board must assert its private /SLAVE line when it is responding to a bus
address. In every case, two addresses must be supported; the configuration space address prior to
configuration, and the software-assigned address after configuration. The method used in this
example is quite similar to techniques used in many Zorro Il designs, and is only slightly more
complex.

The core of a /SLAVE circuit is always an address comparator of some kind. In every
case, the bus address must be compared with the address to which the board responds. The main
comparator in this circuit is the 74F521 at U203. It compares seven bits of possibly-latched bus
address, Ai-Azs, with the corresponding bits on the configuration address latch. This
comparison is called /MATCH on the schematics. Prior to configuration, the 74F374 is
tri-stated, and the outputs going to the comparator are all pulled high, getting the card well on the
way to responding to the $FFO00xxxx configuration space.

The twist in this design is that there is a bit more to this comparison than just a simple
comparator can handle. First of all, the board needs to look at a full eight bits of the $FFO0xxxx
address to properly respond during configuration, but only seven bits of address once the board is
configured as a 32-megabyte board. This PAL U201 helps out by requitsigpBe high for a
ISLAVE response prior to configuration. Zorro Il memory cards must monitor the function
codes FG-FCz2. PICs must only respond to a valid User or Supervisor mode Code or Data space
access; such accesses are given as the exclusive-op @fithd~Ci. The /SLAVE signal is
always qualified with the Zorro 11l full cycle strobe /FCS, and it can occur in only two cases. In
the first case, a qualified match occurs, the board is unconfigured, and /CFGIN is asserted. In the
latter case, a qualified match occurs, the board is configured, and CFGLT is asserted. As
previously mentioned, if the board is configured but CFGLT is negated, the board has been "shut
up" rather than configured.

And that is all there is to the basic configuration logic. As demonstrated with U201, itis
usually quite reasonable to incorporate this logic in with other board logic, where it’ll fit the most
efficiently. AUTOCONFIC® logic is intended to make it easy on the designer as well as the
user; it's not supposed to scare anyone.

BIGRAM 8/32 2-5

2-6

Chapter 2: AUTOCONFI@Logic Design

CHAPTER 3
MEMORY SYSTEM DESIGN

"I like them big and stupid."
-Julie Brown

_RAS,MAX time here WhICh 5 10 OOOns

The PAL counter actually counts 140ns clocks soa count of 71 clocks will get us up to 9,940ns,
close to the desired 10,000ns. If burst mode support weren’t considered here, a count of 111
clocks could be used in the counter.

The counting is quite simple; the counter goes from zero to its terminal count, then
asserts the /REFREQ signal. It then holds onto the /REFREQ signal until a refresh cycle is under
way, as indicated by /REFCYC. The /REFCYC line will reset the counter for the duration of the
refresh cycle. The process starts over once the refresh cycle is complete.

The clocked counter is used here simply because it's very easy to understand and, being
fully digital, always works the same way. It could have been a simple one-shot or 555 timer
circuit, as long as component tolerances don’t allow the timer to drop below the required refresh
frequency. You may recall reading of the evils of such timers in DRAM hint books. While they
aren’'t optimal, due to the aforementioned component tolerance problems, that's not why you
were warned off. The main reason for avoiding such timers in most DRAM designs is the
problem you're likely to have with an asynchronous refresh request. Since we have already
solved the problem of the asynchronous refresh request here, no asynchronous approach is

BIGRAM 8/32 3-1

3-2

inherently evil to this design.

. _RP) in case the refresh is
|mmed|ately foIIowmg a memory cycle The /REFCAS I|ne IS Iatched by /MUX until /RASEN
comes along, so that it's no longer dependent on /REFACK. The /REFACK line will be negated
some time before the end of the CAS-RAS cycle; its main use here is to qualify the start of a
refresh cycle. Once the /RASEN is asserted, /REFCAS is latched by the negated /RASDEL, as is
/RASEN.

/REFREQ

/REFACK

/REFCYC

/FCS

/MATCH

/SLAVE

DOE

Figure 3-1: Refresh Arbitration

The /CASOUT line of U300 is also driven at the start of the refresh cycle. This of course
comes back to U300 as the /CASDEL signal. The refresh /RASEN is driven as soon as
ICASDEL is asserted, thereby separating refresh CAS and refresh RAS by roughly the CAS
delay time. The /RASEN line drives the buffered /RAS lines to either bank of memory. Once
asserted, /RASEN is held until /RASDEL wraps back in. The refresh cycle is held until
/RASDEL once again is negated, thus ensurimg for the refresh cycle, in the event that this
refresh is taklng place rlght before a memory cycle

. _RP after a refresh ora preV|ous memory cycle The
assertlon of /RASEN starts the cycle and /RASEN is held through the end of the cycle. For
fast-page memories, we could drop /RAS before cycle’s end lets us gets an early start on RAS
precharge. Since /RASEN creates /MUX, however, this optimization couldn’t be used for
SCRAM parts -- that could result in a column address change before cycle’s end (SCRAMs don't
latch the column address). Also, /RAS needs to be held through multiple /DTACKSs in burst
mode, so in this implementation the short /RASEN optimization is not done, though it's
something to consider as an improvement. The 100ns tap delay U301 sets the RAS delay, and
J300 provides taps for 100ns, 80ns, and 60ns DRAM. The /RASEN line is buffered, as
previously mentioned, by two gates from the 74F244 at U303, one creating /RABe lower

Chapter 3: Memory System Design

bank of 32 memories, the other creating /RABr the upper bank of 32 memories. U303 also
buffers the first tap from U301, which becomes /MUX, the line used for multiplexing the DRAM
addresses.

The U300 PAL also creates the enable for CAS, the /CASEN line. This is based on
/RASEN, DOE, and /MUX asserted, and it's held through the end of the cycle, until / DTACK is
negated. The /CASEN line qualifies CAS, but it doesn’t necessaily start CAS for a full cycle;
further consideration of CAS generation is done elsewhere. For fast-page mode operation
during a burst cycle, /CASEN follows /IMTCR to generate a new CAS for each cycle. For static
column operation during a burst cycle, /CASEN is simply held asserted until the cycle’s end.

Most of the CAS generation is handled in U304, the CAS generation PAL. The CAS
strobes are used to select between two banks of DRAM, and to select the appropriate bytes to
access during write cycles; this is covered in detail in the next section. Other than qualifiying by

/REFREQ

/REFACK

/IREFCYC

/ICASOUT

/CASDEL

ICAS

IRAS

/RASDEL

Figure 3-2: Refresh Cycle

bank and byte, the CAS generation PAL qualifies all CAS with READ. During read cycles, all
four bytes in the accessed memory bank are activated, in order to support caching of this
memory. Write cycles, on the other hand, are qualified with the appropriate data strobe, to
assure that data is valid before a write-cycle CAS latches write data. All CAS strobes are of
course qualified by /CASEN. They're also all qualified with /CADDR, which is a strobe that
assures column address setup time to CAS. This is just the 60ns tap from the RAS timing tap
delay. The 40ns tap would just about make it, but leaves absolutely no margin. Since column
access is rarely the limiting factor, the 60ns tap is used, for a 30ns worst case /MUX to /CADDR
delay, assuming a 5% per-tap tolerance on the tap delay.

o /CASe ‘based directly on corresponding data
strobes /DS/DSs However there are tW|ce the number of output lines on this PAL device as

BIGRAM 8/32 3-3

3-4

needed for four /CAS lines, and we're still looking for a banking mechanism. With the addition
of the MEG4 signal for memory sizing and the address linesahd A4, the PAL comes to
drive eight total /CAS lines, controlling not only byte enables but the most significant RAM
bank. For 256KX 4 parts, A2 chooses between two 4-megabyte banks. ForXlparts A4
chooses between two 16-megabyte banks.

Within the 4-megabyte banks, another banking control is used. In this case, most of the
work is done by the 74F138 decoder at U305. This device creates a read enable for one of four
device during a read, or a write enable for one of four devices during a write. The selection of
device is controlled by the Bikand BK: lines from U300. BK and BK: are simply Ao and A1
for 256K X 4 support, or A2 and Az for 1M X 4 support. That's all there is to bank selection.
Zorro 1l autosizing requires board memory to be added from the lowest to the highest address
on-board, but there are no hardware requirements for this.

/FCS

/SLAVE

DOE

/DSn

IRAS

/RASDEL

/MUX

ICAS

/CASDEL

/DTACK

Figure 3-3: Memory Access

~0-/IMAL 9, the second by /IMABtMAH 9, but the
multlplexmg scheme IS |dent|cal for both banks. When /MUX is high, the row addresses
IMAo-/MA9 are set to the inverted 1#&A17, A1s, and A1, respectively. For /MUX low, the
column addresses /MAMA9 are set to the inverted 2AA9, Ais, and Ao, respectively. This
organization may seem strange, but it makesAA (the Multiple Transfer static addresses), the
low-order column addresses, so that Multiple Transfer Cycles can be supported via fast page or
static column DRAM. This banking scheme also makes sM#hich is used only by 1MK 4
DRAM, a no-op for 256KX 4 DRAM, since Bk-BK1 look at Ao and Aea.

Chapter 3: Memory System Design

BIGRAM 8/32

3-5

3-6

Chapter 3: Memory System Design

CHAPTER 4
GOING FURTHER

"There is more to life than increasing its speed.”
-Mahatma Gandhi

-..® logic correct and understandable since that's the most likely
part of the deS|gn to be replicated in other Zorro Il PICs. The actual DRAM part of it was
designed, above all else, to work right the first time, since there really wasn't any time to revise
the board. Because | felt that presenting a design example at a Developer’s Conference without a
working sample in hand would certainly be a cause for developers worry about the design’s
guality. So this card was designed to work, above all other concerns.

As it turns out, the original concept for the DRAM memory cycle worked fine, but the
refresh logic has a rather serious flaw that hadn’t been considered originally. When the design
was created, the /REFACK signal was seen as the refresh control that stays valid for the entire
refresh cycle, while the /REFCYC signal, then called /REFHOLD, was an end-of-cycle signal
used to control the RAS precharge delay. That didn't work, and fortunately, the current
mechanism could be created by changing the PAL equations, so the board was working a day
after it was built up without a single cut or jumper.

However, the original memory cycle left a bit to be desired. Initially, the CAS enable
didn’t go out until the full RAS time had been met (eg, /RASDEL is asserted). This worked, but
made CAS quite a bit later than it could have been. With a single extra wire, the CAS PAL was
modified to hold off CAS until column addresses became valid. This allowed the memory

BIGRAM 8/32 4-1

4-2

timing PAL to enable CAS as soon as possible, and resulted in a 15% speedup.

The point here is that the design, as presented, isn't completely fixed. There are a
considerable number of things one could do to change the memory cycle by playing around with
PALs. It's conceivable that even without any additional PCB maodifications, the memory cycle
efficiency could be enhanced.

. _RAC Of TCAS the /DTACK I|ne can be driven
optlmally And of course, the cycle can be fullyq& driven, which is usually going to be the
fastest possible cycle.

Another less than optimal feature of the design is tke dssurance logic. In order to
manage &ke between a cycle immediately following refresh or refresh immediately following a
cycle, all new cycles are held off until /RASDEL is negated. This works just fine, but the time
between /RAS negated and /RASDEL negated is very close torketime. For all standard
DRAMSs, the Tre time is less, sometimes much less, than the required timedas. TThe CAS
precharge time is never a problem for full cycle to full cycle operation, and unlikely to be a
problem for Multiple Transfer Cycles.

The built-in support for Multiple Transfer Cycles can also be improved. The main
problem for such burst cycles that doesn’t crop up elsewhere is thgmhx time of most
DRAMs in burst or static column modes. This board makes sure that a burst transfer can't
exceed this limit by setting the refresh time to something just unaesnMax. When refresh
comes along, it causes /IMTACK to be negated at the appropriate subcycle boundary, thus
making the full cycle terminate so that refresh can take place. This has two shortcomings. First
of all, it makes refresh related slowdowns over 50% more likely than necessary. Additionally,
the start of the burst cycle isn’'t synchronized with the refresh counter, so a burst can be
interrupted by refresh long before necessary. ldeally, separate counters could be added for burst
and refresh timeouts. Alternately, the refresh counter could be modified to change its count
based on whether or not a burst cycle is under way.

Additionally, this can cause bursts to last for strange counts. When a 68030 or 68040
driving the Zorro Il bus it will ask for four count burst cycles. The 68030 can handle a shorter
burst, but a 68040 can’t. For that reason, this design will probably require that burst be disabled
when used in an '040 based Amiga systems. While the Zorro Il bus doesn’t require it, it's a
good idea to make sure that, if possible, designs that support burst will run at least four cycles. If
the refresh counter, U306, were to hold off refresh requests during burst until at least four cycles
had run, that would solve the problem.

_n lines can latch data to the board and effect an
|mmed|ate /DTACK thereby p055|bly savmg some of tlasland Tcas time. In fact, this could
also help reads, since a latched data bus would allow the DRAMSs to shut off as soon as data’s
latched, rather than at the end of the Zorro 11l cycle.

Chapter 4: Going Further

BIGRAM 8/32

4-3

4-4

Chapter 4: Going Further

CHAPTER 5

ADDITIONAL ZORRO Il ADVICE

"Cute rots the intellect."
-Garfield

BIGRAM 8/32

5-1

5-2

Chapter 5: Additional Zorro Il Advice

BIGRAM 8/32

5-3

5-4

Chapter 5: Additional Zorro Il Advice

APPENDICES

"It ain’t the meat, it's the motion"
-Southside Johnny

A.1 PAL Equations

The following section contains the complete PAL equations for the five PAL devices in
the BIGRAM design. All the equations are in the CUPLformat, but should be easily
translated to any other format if required. This format uses the & character to represent AND,
the # symbol to represent OR, the $ symbol for XOR, and the ! symbol for negation. Standard
outputs are indicated simply by name, registered outputs are indicated with the .D extension, and
output enables are indicated with the .OE extension. The CWPLtompiler minimizes
equations where possible; should any equations here appear to be too large, rest assured that they
will actually fit in the specified PAL.

BIGRAM 8/32 A-1

A.1.1 Autoconfiguration Control PAL

This device is responsible for providing the AUTOCONPIBGOM, registers, and data
buffer direction control. This is to be programmed into a 15ns 16L8 or equivalent device.

PARTNO U200 ;

NAME U200 ,

DATE May 30, 1990 ;
REV 2,

DESIGNER Dave Haynie ;
COMPANY Commodore-Amiga ;
ASSEMBLY BIGRAM ;
LOCATION U200 ;

* *
;: Zorro |l BIGRAM Configuration Control * y
I* This device acts as configuration ROM and configuration */

I* register controller. */

* *
/ /

* *
/* DEVICE DATA: *
* *
I* Device: 16L8-15 *

* Clock: NONE *

* Unused: NONE */
* *
/ /

/* INPUTS: */

PIN 1 = ISLAVE ; /* Board selected? */

PIN 2 = IRST ; /* Board reset */

PIN 3 = IDS3 ; /* High order data strobe. */

PIN 4 = READ ; /* Read cycle strobe */

PIN 5 = A2 ; /* Bus Addresses. */

PIN 6 = A3 ;

PIN 7 = A4 ;

PIN 8 = A5 ;

PIN 9 = A6 ;

PIN 11 = Al ; [* This is really A8. */

PIN 16 = ICFGOUT ; /* Board configured? */

/* OUTPUTS: */

PIN 19 = D28 ; /* Configuration data ROM nybble. */

PIN 12 = D31 ;

PIN 13 = D30 ;

PIN 14 = D29 ;

PIN 15 = DBDIR ; /* Data buffer direction. */

/* BIDIRECTIONALS: */

PIN 17 = IPRECON ; /* Preconfiguation strobe. */

PIN 18 = CFGLT ; /* Configuration address latch. */

/** INTERNAL TERMS: **/

/* Mapping A8 as Al here makes the register pairs line up just
as they would under Zorro Il configuration. */

field addr = [A6..1];

/** OUTPUT TERMS: *¥/

/* The configuration ROM is created here. The logical ordering
of it is as follows:

REG 76543210

00 10100001 Zorro ll, autolink, 32 megabytes

04 10010010 Product $53

08 10110001 Extended Memory board, supports
Shutup, autosized in software.

oc 00000000 Reserved

10 00000010 Manufacturer's code (C-A)

14 00000010

18-3C 00000000 Zeroed options/reserved.

The autoconfiguration specs call for every readable register
exceﬁt for O to be inverted in the physical implementation.
So the resulting map is:

Appendices

ADDR D31 D30 D29 (|)328

00 1 0 1
02 0 0 0 1
04 0 1 1 0
06 1 1 0 1
08 0 1 0 0
0A 1 1 1 0
oc 1 1 1 1
OE 1 1 1 1
10 1 1 1 1
12 1 1 0 1
14 1 1 1 1
16 1 1 0 1
OTHERS 1 1 1 1

Only the Zero terms are explicitly entered here; anything not specifically
d/nven low will be driven high.

D31 = addr:02
addr:04
addr:08;

D30 = addr:00
addr:02;

D29 = addr:02
addr:06
addr:08
addr:12
addr:16;

D28 = addr:00
addr:04
addr:08
addr:0A;

[D31..28].0E = SLAVE & !ICFGOUT & READ;

[* This signal is driven to indicate an address latch request.
Note that the board uses 16 bit configuration write feature
to configure all at once; this isn't available in the Zorro I
configuration space. *

CFGLT = SLAVE & PRECON & !A3
CFGLT & IRST,;

/* If the board is told to shut up or configure, this line is
asserted and held through reset. The logical SHUTUP line
is PRECON & !ICFGLT, once FCS is negated. */
PRECON = SLAVE & DS3 & 'READ & addr:4C
SLAVE & DS3 & 'READ & addr:44
PRECON & IRST;

[* This controls the data buffer direction between the PIC’s
local bus and the expansion bus. */

DBDIR = SLAVE & READ;

BIGRAM 8/32

A-3

A.1.2 Board Control PAL

This device controls an assortment of board functions. It creates the /SLAVE,
/CFGOUT, and /MTACK signals for Zorro lll. It creates the data buffer enable for the bus
buffers, and the burst-enable line used by the memory system. And it arbitrates DRAM refresh.
This is programmed into a 10ns 20L8 or equivalent PAL.

PARTNO U201 ;

NAME U201 ;

DATE May 30, 1990 ;
REV 3;

DESIGNER Dave Haynie ;
COMPANY Commodore-Amiga ;

ASSEMBLY BIGRAM ;
LOCATION U201 ;

* */
;* Zorro |l BIGRAM Board Control */ y
;* This device controls the main features of the BIGRAM board. */ Y
/ / y
;* DEVICE DATA: :;
I* Device: 20L8-10 */

I* Clock: NONE */
;: Unused: 22(0) */ Y
/ /

/* INPUTS: */

PIN 1 = IMATCH ; /* Address match from comparator. */

PIN 2 = CFGLT ; /* Configuration latch. */

PIN 3 = IPRECON ; /* Board was configed or shutup. */

PIN 4 = IFCS ; /* Full Cycle Strobe. */

PIN 5 = ICEGIN ; [* Configuration chain in. */

PIN 6 = FCO ; /* Function codes, don't ignore these! */

PIN 7 = FC ;

PIN 8 = IREFREQ ; /* Refresh request from refresh counter */
PIN 9 = 1IZ2SHUNT ; /* Zorro Il backplane bypass. */

PIN 10 = DOE ; /* Data enable. */

PIN 11 = IBERR ; * Bus error, all off. */

PIN 13 = IREFCYC ; /* We're in a refresh cycle. */

PIN 14 = 'BRENB ; /* Burst/Multiple transfer enable. */

PIN 20 = IMTCR ; /* We're in a multiple cycle. */

PIN 23 = A24 ; /* Latched bus address 24. */

/* OUTPUTS: */

PIN 15 = IDBOE ; /* Data buffer output enable. */

/* BIDIRECTIONALS: */

PIN 16 = ICFGOUT ; /* Board is configured. */

PIN 17 = IREFACK ; /* Refresh acknowledge. */

PIN 18 = IMTACK ; /* Multiple transfer acknowledge. */

PIN 19 = ISLAVE ; * Board_ select. */

PIN 21 = IBURST ; /* This is a burst cycle. */

/** INTERNAL TERMS: **/

/* The valid board address consists of a comparator match and a valid
memory space. The valid spaces are as follows:

SPACE FC2 FC1 FCO
Reserved 0O 0 O
User Data 0 0 1
User Program 0 1 0
Reserved 0 1 1
Reserved 1 0 O
Supervisor Data 1 0 1
Supervisor Program 1 1 0

CPU 1 1 1

This reduces to the equation used: FCO XOR FC1. The external comparator
only looks at A31..A25, which is OK for normal operation (we're a 32

meg board), but bad for configuration. So if we're not yet configured,

4-)2 must be high for a select match.

select = MATCH & (FCO $ FC1) & (CFGOUT # A24);

Appendices

/* This indicates a normal board select; SLAVE starts the cycle, FCS
cuts it off quickly at the end. */

hit = SLAVE & FCS;
/* OUTPUT TERMS: */

/* This output controls the data buffer enable pins. Data buffers
turn on when DOE is asserted and the board is selected, they
turn off as quickly after a cycle ends as possible. */

DBOE = hit & DOE & !BERR,;

/* This signal indicates that the board is configured. The board is
considered configured if actually configured, shut up, or placed

in a Zorro Il backplane. It only responds if actuaclfl configured,
of course. This signal must only change at the end of a cycle, if
actually operating. */

CFGOUT = PRECON & CFGIN & !FCS & IDOE
PRECON & CFGOUT
Z2SHUNT & CFGIN;

/* This is the refresh acknowledge cycle. When the a refresh request
comes in, and the coast is clear, this line is asserted to start

the refresh machine. Determining when the coast is clear, eg,
arbitrating refresh, is the trick to_all hand-made DRAM controllers.
This one works pretty simply. The coast is clear when there’s no
bus cycle happening,” or when a bus cycle is happening but another
slave is responding. The trick is avoid races; FCS could be
changing just as REFREQ comes in. Therefore, the second half of
this arbiter is in the RAS cycle generation, which doesn’t start

untii REFACK is negated and SLAVE is asserted. */

REFACK = REFREQ & !FCS & IMATCH
REFRES & FCS & ISLAVE & DOE
REFACK & REFREQ;

/* The multiple cycle transfer acknowledge. If the jumper enables
them, and a refresh isn’t already requested, we’ll acknowledge
them. If a refresh request comes in, we’ll negate MTACK after
the current cycle finishes, which will result in one more

burst cycle before the full cycle terminates and the refresh

can be acknowledged. | do it this way because | use the
refresh timer to handle the TRASMAX limitation of the DRAM as
wall as handling refresh. */

MTACK = hit & BRENB & !REFREQ
hit & MTACK & DOE
hit & MTACK & MTCR;

MTACK.OE = hit;

/* This is. SLAVE, the board select line. Most board activity centers
around this line. If the board is selected and unconfigured,

alwazs respond. Once, conflgured, only respond if it's not shutup

or shunted. This line is held through the cycle’'s end. */

SLAVE = select & FCS & CFGIN & ICEGOUT
select & FCS & CFGLT & CFGOUT,;

/* This indicates if the cycle is a burst cycle. The first cycle is
always a non-burst cycle. If, at the end of the first cycle,
MTCR and MTACK are asserted, all subsequent cycles are burst
until FCS is negated. */

BURST = SLAVE & DOE & MTCR & MTACK
BURST & FCS;

BIGRAM 8/32

A-5

A.1.3 Memory Timing PAL

This device controls RAS and CAS timing, /IDTACK generation, and high order RAM
banking. This must be programmed into a 10ns 20L8 or equivalent device.

PARTNO U300 ;

NAME U300 ;

DATE January 10, 1991 ;
REV 6 ;

DESIGNER Dave Haynie ;
COMPANY Commodore-Amiga ;
ASSEMBLY BIGRAM ;
LOCATION U300 ;

* *
;: Zorro |l BIGRAM DRAM Timing */ y
* This device controls the standard and refresh timing of the *

I* dynamic RAM. Big-Time asynchronicity ahead! This also controls */

;: banking within a CAS controlled memory bank. * y
/ /

* *
/* DEVICE DATA: *
* *
* Device: 20L8-10 *

* Clock: NONE */

* Unused: NONE */
* *
/ /

* */
/* REVISION HISTORY: *

* *
I* DBH 05-02: Original version. */

I* DBH 05-24: Hacked refresh logic to remove CAS bounce. */

I* DBH 05-24: More refresh logic adjustments. */

I* DBH 05-24: Fixed refresh end-of-cycle. */

;: DBH 05-30: Fixed slow CAS problems. * y
* DBH 01-10: Fixed burst RAS problem.) */

;: DBH 01-10: Fixed page-mode RAS/CAS generation. */ y
/ /

/* INPUTS: */

PIN 1 = IRASDEL ; /* RAS strobe delay */

PIN 2 = IMUX ; /* DRAM Address multiplexer */

PIN 3 = IMTCR ; /* Multiple cgcle request. */

PIN 4 = IBURST ; /* We're in burst mode. */

PIN 5 = DOE ; /* Data time */ .

PIN 6 = ISLAVE ; /* The board is responding */

PIN 7 = IREFACK ; /* We're servicing a refresh request */

PIN 8 = SCRAM ; /* We're using static column RAM. */

PIN 9 = A23 ; /* System addresses */

PIN 10 = A22 ;

PIN 11 = A21 ;

PIN 13 = A20 ;

PIN 14 = MEG4 ; /* 4 Meg parts? */

PIN 23 = ICASDEL ; [* CAS strobe delay */

/* BIDIRECTIONALS: */

PIN 16 = ICASEN ; /* CAS strobe enable */

PIN 17 = ICASOUT ; /* CAS delay input */

PIN 18 = IREFCAS ; /* CAS for refresh */

PIN 19 = IREFCYC ; /* We're in a refresh cycle. */

PIN 20 = IDTACK ; /* Data is valid on bus */

PIN 21 = IRASEN ; /* RAS strobe enable */

/* OUTPUTS: */

PIN 22 = BKO ; /* Small Bank bit 0 */

PIN 15 = BK1 ; /* Small Bank bit 1 */

/** OUTPUT TERMS: *¥/

/* The data valid signal. Data is valid on the bus if we’re not in a refresh cycle,
the board is selected, and something’s happened. The non-burst cycle is driven by RAS
delay only, the burst cycle by CAS delay only. */

DTACK = SLAVE & IBURST & !'REFACK & !'REFCYC & DOE & RASDEL & CASDEL
SLAVE & IBURST & DTACK
SLAVE & BURST & 'REFACK & !'REFCYC & DOE & CASOUT & CASDEL & MTCR
SLAVE & BURST & DTACK & MTCR,;

Appendices

DTACK.OE = SLAVE;

/* The RAS enable strobe. If we're not in refresh, it goes as soon
as we're sure the board is selected. If refresh is called for,
start a RAS cycle after the CAS delay. */

RASEN = IREFACK & !REFCYC & !'RASDEL & !ICASEN & SLAVE
IREFACK & 'REFCYC & RASEN & SLAVE
REFCYC & CASDEL & !'RASDEL
REFCYC & RASEN & !'RASDEL,;

[* The CAS enable works differently for burst vs. non-burst. For non-burst,
it follows RASEN after DOE and MUX are asserted. In a burst cycle, it
follows MTCR. For refresh, CAS can't be enabled until we're sure that
RASDEL is negated, thus ensuring RAS precharge when a refresh cycle
immediately follows a standard memory cycle.

CASOUT = IREFACK & !REFCYC & !BURST & RASEN & MUX & DOE & !'RASDEL

IREFACK & !IREFCYC & IBURST & CASOUT & SLAVE
IREFACK & !'REFCYC & BURST & !ICASDEL & MTCR
IREFACK & !'REFCYC & BURST & CASOUT & MTCR
REFACK & REFCYC & 'RASEN & !'RASDEL

CASOUT & REFCYC & !RASEN;

/* The actual CAS that goes out is modified by our use of SCRAMs. If
SCRAMs are in use, CASEN ques low and stays low, while CASOUT works
the DTACK line. Otherwise, CASEN and CASOUT are the same. */

CASEN = IREFACK & !REFCYC & ISCRAM & CASOUT
IREFACK & IREFCYC & SCRAM & CASOUT
IREFACK & !'REFCYC & SCRAM & CASEN & SLAVE;

/* This is the rest of the refresh machine. A refresh cycle starts with a
valid refresh acknowledge and the assertion of the standard and refresh
CAS. RAS for refresh is asserted one CASDEL later, and standard CAS is
n%gléated at the same point. The refresh counter will clear REFREQ when
REFCYC is asserted, and clear REFACK when REFREQ is negated. */

REFCAS = REFACK & REFCYC & ICASDEL & !RASDEL
REFCAS & REFCYC & !MUX
REFCAS & REFCYC & RASEN & !RASDEL;

REFCYC = REFACK & !CASDEL & !RASDEL
REFCYC & CASOUT & !RASDEL
REFCYC & RASEN
REFCYC & RASDEL;

/* Bank control. The bank is controlled by A23 and A22 for 4 Meg memory,
A21 and A20 for 1 Meg memory. */

BKO = A22 & MEG4
A20 & IMEG4,;
BK1 = A23 & MEG4
A21 & IMEG4,;

BIGRAM 8/32

A.1.4 CAS Control PAL

This device controls the CAS generation and banking. This must be programmed into a
15ns 20L8 PAL device or equivalent.

PARTNO U304 ;

NAME U304 ,

DATE May 30, 1990 ;
REV 3,

DESIGNER Dave Haynie ;
COMPANY Commodore-Amiga ;
ASSEMBLY BIGRAM ;
LOCATION U304 ;

* *
;: Zorro Il BIGRAM DRAM CAS Select * y
* This device controls the CAS strobes, which control DRAM byte *

;: enables and most significant bank. */ y
/ /

* *
/* DEVICE DATA: *
* *
I* Device: 20L8-15 *

* Clock: NONE *

* Unused: NONE */
* *
/ /

/* INPUTS: */

PIN 1 = ICASEN ; /* Normal CAS enable */

PIN 2 = IDTACK ; /* Zorro lll cycle termination */

PIN 3 = IREFCAS ; [* CAS for refresh cycle */

PIN 4 = IREFACK ; /* We're in refresh */

PIN 5 = IDS3 ; /* Zorro lll data strobes */

PIN 6 = IDS2 ;

PIN 7 = IDS1 ;

PIN 8 = IDSO ;)]]

PIN 9 = SCRAM ; /* Using static column memories */

PIN 10 = READ ; /* Zorro Il Read enable */

PIN 11 = MEG4 ; /* Are we using 4 Meg parts? */

PIN 13 = ICADDR ; /* Column Address Valid */

PIN 14 = A24 ; /* Address lines */

PIN 23 = A22 ;

/* OUTPUTS: ¥/

PIN 15 = ICASLO ; /* Lower bank CAS */

PIN 16 = ICASL1 ;

PIN 17 = ICASL2 ;

PIN 18 = ICASL3 ;

PIN 19 = ICASHO ; /* Upper bank CAS */

PIN 20 = ICASH1 ;

PIN 21 = ICASH2 ;

PIN 22 = ICASH3 ;

/** INTERNAL TERMS: **/

/* The CAS lines are the hi%rf]ﬁst order banking control. If we're using 1 Meg
parts, lower is $0000000-$03fffff, upper is $0400000-$07fffff, so A22 controls
the banking. If we're using 4 Meg parts, lower is $0000000-$0ffffff, upper is
$1000000-$1ffffff, so A24 controls the banking. */

lower = IA24 & MEG4 & CASEN & CADDR
IA22 & MEG4 & CASEN & CADDR;
upper = A24 & MEG4 & CASEN & CADDR

A22 & 'MEG4 & CASEN & CADDR;
/** OUTPUT TERMS: *¥/

[* The CAS terms are simple. There are two banks of memory, and the banking
is controlled as above. On writes, the data strobes control the particular

CAS line, and we wait for WRDEL so that data is guaranteed valid on the
DRAM bus. On reads, all CAS lines in a bank are asserted ASAP. On

refresh, all CAS lines are asserted. */

CASLO = lower & 'READ & DSO
lower & READ
REFCAS;

CASL1 = lower & 'READ & DS1

lower & READ
REFCAS;

Appendices

CASL2

CASL3

CASHO

CASH1

CASH2

CASH3

= lower & IREAD & DS2
lower & READ
REFCAS;

= lower & 'READ & DS3
lower & READ
REFCAS;
= upper & 'READ & DSO
upfer & READ

FCAS;
= upper & IREAD & DS1
upf READ

FCAS
= upper & IREAD & DS2
upf READ

FCAS
= up IREAD & DS3

u READ
FI)éJFCAS

H

H*

BIGRAM 8/32

A-9

A.1.5 Refresh Counter PAL

This device is responsible for timing the CAS-before-RAS refresh used by the DRAM
system. This must be programmed into a 25ns 16R8 or equivalent device.

PARTNO U306 ;

NAME U306 ,

DATE May 30, 1990 ;
REV 1;

DESIGNER Dave Haynie ;
COMPANY Commodore-Amiga ;
ASSEMBLY BIGRAM ;
LOCATION U306 ;

* *
;: Zorro |l BIGRAM DRAM Refresh Counter. */ y
;: This device is responsible for generating refresh request. */ y
/ /

* *
/* DEVICE DATA: *
* *
* Device: 16R8-25 */

I* Clock: C7M *
* Unused: NONE */
* *
/ /

/* INPUTS: */

PIN 2 = IREFACK ; /* We'’re servicing a refresh request */

PIN 3 = IREFCYC ; /* We're in a refresh cycle. */

/* BIDIRECTIONALS: */

PIN 19 = IREFREQ ; /* Refresh request */

/* USED INTERNALLY: */

PIN 18 = RO ; [* Counter bits */

PIN 17 = IR1 ;

PIN 16 = IR2 ;

PIN 15 = IR3 ;

PIN 14 = R4 ;

PIN 13 = IR5 ;

PIN 12 = IR6 ;

/** INTERNAL TERMS: **/
field count = [R6..0];
/** OUTPUT TERMS: *¥/

/* The refresh request is asserted when the terminal count has been reached.
It's held until REFHOLD is asserted. */

REFREQ.D = count:70
REFREQ & !'REFCYC;

/* The refresh counter is pretty simple. We're assuming one refresh cycle
every 15,625ns, which works out fine for the 8ms, 512 row 1 Meg parts
or the 16ms, 1024 row 4 MegtJ parts. However, the maximum TRAS period
is only 10,000ns, which must be taken into account to support burst

mode. Counting 71 140ns C7M clocks gets me to 9,940ns, close enough.
The counter resets when REFCYC comes along. */

RO.D = IREFCYC & !RO;
R1.D = IREFCYC & RO & R1
IREFCYC & RO & RI;
R2.D = IREFCYC & RO & R1 & 'R2
IREFCYC & IR1 & R2
IREFCYC & RO & R2;
R3.D = IREFCYC & RO & R1 & R2 & IR3
IREFCYC & 'R2 & R3
IREFCYC & R1 & RS3
IREFCYC & RO & RS;
R4.D = IREFCYC & RO & R1 & R2 & R3 & R4
IREFCYC & 'R3 & R4
IREFCYC & 'R2 & R4

A-10 Appendices

R5.D

R6.D

H*

TR

HHFHFHN

IREFCYC
IREFCYC

IREFCYC

RQRRRRRRRR R o

R1
RO

R2
R1
RO

RO & R1 & R2& R3 & R4 &'R5R5 & IR6

R2
R1

BIGRAM 8/32

'R3

'R3

& R4
& R4,

RO & R1 & R2 & R3 & R4 & IR5
R4

R4

R0 Ro Ro Ro Ro

R0 Ro Ro Ro Ro Ro

A-11

A.2 Schematics

The following pages contain the schematics for the example memory board. The list of
parts is as follows:

Capacitors
0.01uF MLC C109
0.10uF MLC
C100-C107,C200-C203,C300-C306,C400-C404
0.33uF MLC

A-12 Appendices

S3aHOLV'1 ¥ Sddd4dnd SNd

Syzdvl =
¥ agd T 484
3080/ BT 4n10 0
60TD —— dn/y
€ 6 |8 897 S 801D ~
N8 3
H 8 lov oa &
T L HAre S NNODEZ
0 v 3 S
0 Sy v g 3 nﬁ
8 v ov za o S —s{AzT- AG- Fo— J0A
L v T8t 1as -0 AZT+ AG+ 8
91a z g 0as o1 9
NG+
votn o4 5
o4 €15, 1SM0 |
= o4 £ 76 =Yy
Syzdv. £/64v. gg | &4 1353 Bes
LH Peg
T g 23T Noas 57| %98 &34 Doy, ENELN]
5) 20 P 1as
BT T N1as 17198 N vhzdvL
Neas 6 4108 Peg
gv sa » @ £as »Owd b8 - 7
6 IT_ siav 8v 6 8 N NS T 29
N8 D o ¥as WO pé2-
8 YIaY 2 9 7 Y N+as 3 WO BL TT 6 OIN/
LN Brer eiav oTY TR Ay 01av Eq 9g | IS RERST
Sv ga e 0 a N oas ga pr2-
vT _ z1av 1TV Z 3 T1av NES i 88 oo 3e0en
= PV va & c—® € /as
TIaY 2TV 8 Z1av 1as z
ev €d D MOVIA
01aY £TY 7 £10v v SOVIN |
e v a8 ™ YTV 10 Wiy $IQY ovs 72| QU EIN Pot
v T8 ® oa S £vS 3oa [8
0a z 3 8av STV z B S1av £V 9 £6
S S 007 pE
501N 10N By ¥ 207 Pez
S avs ND
& 12 gvs yovia psL
ovs __ec| NS Ovid %59 SOV1a]
Syzdv. gledv) NS 8 89 avadz
dia o — 8av 0sa -
L g9 20 P i 0F | sav TSa Pea osd /
T T 60v e] 50 1 Ps6 1SQ/
gv sa » a O1dy. ve | Tav €39 b0z 2sd /
S 6 TT _ seav 9TV 6 8 9Tav T1av 3 Sa e =]
N8 o D o e | z1av S0 pel-
¥ 8 22av 1TV 9 7 110v Z1av SO By
ov og [o D a 8¢ | £1av 53
€ L €T Teav 8TV S 7 81av £1av 6 L6 S =]
sv sa g SLIw y1av
Z vT _ 0zav 6TV c 3 610Y YIaY Ty
2 v va L clied eq S1av
T 5 ST 61av 02y 8 02av S1AY 52 vhzdvs
ev ¢€d D < 91av 9IN | P55—
0 81QY T2y 7 T2av 91av S %
Y v ez —SIAY lov 2 1L E/ 110V
v 18 ® oa £aly L1V LV s1av
80 z 8T o1av gov Z B £2av 810V s | 81V ZIN 1 g 7 AE Y
501N Z0Tn 610V 5 2IN| Pgt
3 0eav
02av 95 9% acosn
Loy 85 | zzav N B0
Svzdv, g/edv) Zey 15 2T N DD/
S gzav 1D
£2av 6 TT 10000/
T 4 27T veay vy VTS Pg SAVIS /
5] 20 pH— g Szav £ZISNES
6T T S2av A 16 INOHS /
92av 7
1 6 |8 897 Teay vy TR Qg vzav 120V Ledv E I
N8 D oa g 82av WD
0 8 ZT oy Gov 9 7 G2av 820V 6 26 WD
g ov og £ D <a 0 62av oV
6 L ST 6zav \ 92v S 7 92av 620V L ST
sv sa o SLIw 0eav £ Al
8 2 {w g (L—8Qv Lod <ligd ea it Loy 9edy 33 Teav Do
1 G ST Jzav 82v 6 8 820V Teav B 9T ST
ev €g o D
9 v 9T ozav 62v 7 620V 00T
c—2ev 24 = 1d
= v 19 & sedv 0Ly @ odZ 0gQv
20 z 8T veav Tev Z B Teav 00TND
707N £0TN 20A
oTea
Svzdv.
O Pet 4n00T 4n00T 410 4nT 0 4n1 0
eg 8y TID ¥ 0T *] 2010 901D S0TD ——
avad T 6 avaaz
21|48 Vg [SeEval]
<l loa ov =
Facl 3 L 2V
sa Sv S
£y 7Ilva v £Y -
vy ST| 78 WIs PYS = 20A
[v SvS I
z8 v [Z S
ov AR oV
N g z VS 4nT 0 4T 0 4nT 0 40 4nT 0
001N ¥0TD €010 Z01D 1010 001> ——
1)V 20N M % M
47

A-13

BIGRAM 8/32

TOH1INODO d4d4dNd & NO 11LVAHMO 19ANOD

4anT o

€020 2020 1020 0020

—

4nT 0 \ﬁ 4anT ‘o H 4nT 0

Bt

0 1ed
T Tew
98191
) 2 S —
61 ——8v
T g8 %lis Sy
NDEQ €1 L1z 2
620 vig O 219 &Y
g iaed S 5 LS oY
ord B by avad
td D ElE £5a /
8Td 8 ¢l [2 =Ty
82a 6 T
002N
fgSEs)
NOOZad /
asioz
v
€T 1S vev
eire RYeEETY]
SEi RNEEW]
O 3
© eire INOHS /
EeCal] 519 %9 8lrs e ENEENY]
10O/ 91g &3 ST 104
SOV / 114 8 e [VoE]
SOVIN / 8Td 5 FAE N B0/
SAVIS / 619 53 i 237
HOIN / 0z B Clle
Isana/ 10D fle
ToZN viedvL
12540 -
- TT
5790 Mz TeV 0 Fr =
sz 0£Y —_» I
&« 62y 6118 SIB
b 82y o X WL S
vy 129 st R B 9
. S e 92y T Wre 1
= 9 Is 5oy 6 1% 908 8
7 9 1% G2 6
1 ® s 18 Sl 08q
BIE z € Tea
378WN3 1sdng Brls Zozn
O——"—] D I
edr = Bz
00zC S
€ B3
20A 2
£02n
ST
00T
20A

Appendices

A-14

aN IHOVN HS3H4dd & '104d1NOO ASONA

=
4nt 0 \ﬁ 4nT o \ﬁ 4nT 0 \W 4nT 0 \ﬁ 4nt 0 \W 4nt 0 \ﬁ 4nt 0 \ﬁ
90€d tﬁ 50€0 H v0€d tﬁ £0€0 H 20€d tﬁ 10€D H 00€3 tﬁ
mr vrzdvs =
20N
€ It
vy
Heoen
goed 2z 8ETdY/ 5 ST
A am> Wy NT 3Z INGN WWHOS INVHd
£/ 95 3385 1000 = = og0en” vrzdvL
o=/ 6 dN B SAVS | edr edr
T/ otg 94 9 SOV=3d / zoer go0er
0/ LLd EX 7 B
2N g JIE c000x £000x 4g0en
TN/ YIgon V[
0N / S T z z
zoedd 2z Soen 20A 20N
T Te N
810z
YT
€11 [£4 2
. ZTl
0 €)oo/ elire
T
00ed 2z oo avad
0 g8
0150 / 519 %9 R 050/
TS0/ 91g &3 Sz 15/
FASAY] 119 9 o Z5a/
£S5V / 819 59 Sils £sa/
OHSYO / 619 19 40 SOV /
L 929 20 zZItE
ZHSYD | 1298 ¢lre
EHSVO / %4 T
ToEdd 22 Toen
0 € HovD /
ENRTR=Y ON W IL vea
AVIEd dvi
ZXv HIaVEH 810z
SL 8 L YT
vl S 9 g ETI[£
1 2 =
NI TLH— ot [k Loy
T T Toer Lo zoy
. Sile €2V
Zoen 519 8 8lrs
NESO/__9Ig L SOV |
10SvD [11 99 o ETCASY]
SvoimH/ 8ld SIS Eod
RYeEET] 619 19 v 1sana /
Sov1a / 0cd tilE SOIN /
T — gl
006N
vyedvL
zz
L Svd
ASva / vT g supotT
TogY ZX€ ¥3aVaH 00eCr H3INNOD HSIMH3M
ogoen SL 9 g
Sirs FA ve49T =
vvzdvL 9
zz €L o7 ¢ I D 77
z1L (9T SB
2 T 5e)
NI TL
Sl 9T v T 2zt —-d80 81l
ooed 23,0 .18 —
ggoen Toen Ed s 51—
21 1
o 51—
vredvL -
2R S
XOW 7 8T Z BI9B ¢[E RYeEE2Y]
[EREENY] 6T z SOV /

veoen

8
)

A-15

BIGRAM 8/32

ELLe]

0010 0010 0010 0010

T

i

4nT 0 \ﬁ‘ 4nt o xﬁ‘ 4nT 0 \W
1 1

go- b

ce

8Gedv/.

ON IX3'1d I LTI SS34dav

1

rAA4

et

AV V¥

ETV

Qi MIN
Pe=q=q~4

AE VE

11V

Yovdd 7

AT VI

wloHO M| W)

0TV

ce

AT VT

L,

=1

(<]

cT

AV V¥

9TV
8V

LIV

Fe=q=q~4

st

AE VE

SIV

€0vdd

AC V¢

wloHO M| W)

VIV

ce

AT VI

v

L,

=1

(0 "6 HWA 7

et

AV V¥

TN 7

AE VE

8TWN /
c0vdd

AT Ve

ce

AT VI

NmwbOHOS (M| W)

o] lell]ol el
<K

1

(43

AV VPV

9
Pe=q=4~4
~~~~

AE VE

TOvdd

AT VC

(44

AT VT

NmwOHOS (M| W)

1

YA A

(43

AV V¥

€TV

I

h
Pe=q=4~4
~~~~

AE VE

11V

00vdd 7

AT Ve

woHOS (M| W)

|

01V

T oLt /08

T oLt /08

% LOvdd
JO0N

0Lv /0EE

Q
1
Z
€
4
S

% SOvdd
00N

€ TENV

(0 6)TWN /7

AT VT

o)

XN/

Appendices

A-16

MNVE ASHONIN MO

£ [
£/
© Mwl_WMm
SR
m € 6 S 1
n ¢ ? 7 1 7 £
& 4 & <t <t a & &
&
= vlelzfo pend vlelzfo vlelzfo vlelzfo vlelzfo viElf vl
T=
. €210 £210 p— €210 o — €210 | — £210 p— €210 €210 p— €210 | —
aneeo | anesco | 5688 Bp—] 5688 R pr—] 5688 Rpr—] 5688 Rpr—] 5438 R pr—] 5688 Rp—] 5688 R p—] 5688 Rp—|
oesS G285 = B g g s s B2 = B o8 b o8 b
SO P e S PesTevo S Pe T Tevo 7 SO Pe e Tevo O P T S P T S Peoevo 7 SO FE oevo 7
6v = ev = ev = 6v = v = 6v = 6v = 6v —
N = ¥ ¥ ¥ ¥ ¥ & o
= v 1 v Qe8] v [v v 1 v 1 v 1 v (9581
ov 2 ov 1 ov |5 ov ov = ov = ov = ov |5 4l
j sv E sv E: sv sv sv B av E sv B sv i
. v 1 v 1 v w I 1 v 1 w 1 w
TS = e === = e % === === == % tha
v 21 Y = e v 2 21 v = Y = & e <
o TN/ o OA O [TT 0w / o7 0N / o7 TN/ o TN/ o~ A/ O [TT 0N /
AT T AT T PNT v HNT W BT v NT e TNT T HNT v
20N TESN ogsn 6zsn 8zsn Lzzsn 9zsn szsn vesn
0 6 TWN
F= e
_Z\ [
sl
€ISV 7
©TeQa
1 s T
£ n B ¢ 7 T 7 £
& L & <t <t a &4 &
&
= vlelzfo pand vlelzfo vlelzfo vlelzfo vlelzfo vielfo vielfo
T=
19 - 19 20 pr—— 19 20 pr— 19 20 pr— 10 20 pr— 10 o 19 20 pr— 19 20—
angerg | amzeo | 5838 R pr— | 5838 R br— 5838 R pr—| 5838 R pr— | 5858 3 pr— | 5838 2 pr—| 5838 2 pr—| 5838 R p— |
sva sva sva sva sva sva sva sva A
Dol s S Y] 9 Peeevo 7 9 Pezevo 1 S Pe T evo 7 O P T/ 9 P Tiev 7 9 PGV 7 9 Pe oevo 7
6v 5 (A = (A 6v = 6V = v = 6v = 6v =
S i i=: i i i ¥ BEE % BF i
- v (e 21 v [=1 v [v 95 —81 v (21 v (e 21 v (e =1 v (95 —8T
T X e o M- T EMI: EMIN = X BT o X e o X e o EMI: AL
sv (8191 sv 8121 sv [sv [8 sv [BI a1 sv (8191 sv 8121 sv [BL o1
4NEE "0 4NEE "0 g T v o v o wig g £ v 9 17T 7 [a 177 paAE:) ANl
&v J v v v &v J v 2 v = v J
810 ST & & N & & & & & & & & & AL
I e v £ . v £ v £ I e e v £ T
oV [T 0 oV O / ov % O / oV [0w / oV [0T / oV [F O / oV [T O / ov % O /
TNT T AT e T Ve HNT Ve NT Ve TRNT TV TNT TV T Ve
D0NA €zan zzsn TZsn ozsn 615N 8TsN T8N 9tTSN
0 6w/
1=/
LM/
TS
oTEXa
T s T
£ m wm 1 1 Z £
& 4 & <t <t a &4 &
&
= vlelzfo Eend vlelzfo vlelzfo vlelzfo vlelzfo vielfo vielfo
T=
£210 b £210 b— £210 b— £210 b £210 — £210 — £210 b £210 b—
ance o \7! ange 0 \7! §868 Rp— | §848 R p—J §&48 R p— §&48 R p— &§648 Rp— | &&48 Rpr— &&48 R pr— &&48 R p—
sva sva sva sva sva sva sva sva
= D —— Dl —— C—— P ———] m— EC —— Dl ——
S Do SO P Ewvo / SO Pezwvo 7 S Pz 7 SO P T 7 =] TSV / SV P oo / S P oV 7
ov - ov ov ov - ov - ov - ov = ov
8& o o - N o o o & o
= A . A T = AA T AA A . A . A = AA AL
T EMA o7 v = EA ov oV o1 ENA o7 v EA AL
j sv 1 sv sv sv sv 1 sv 1 sv sv 4L
. Y E Y v w w 1 w 1 w w
ange o | ance o % Fsr—in r 4 4 & e % Fsr—in r 3 4 i
v T v v v v = v = v = v =
v < v : v v v < v < v = v T
ov O / ov O / oV O / ov OTwA / ov 0T ov O / ov O / ov O/
PINT Wvaa PNT Wvaad PNT Wvaad PINT Wvaa PINT Wvaa PINT Wvaa PINT Wvaa PINT Wvaa
I sTen vian eTan zTan TTsn otsn 6050 ‘805N
106) TWN
EWA
O/
T
©TEXQd
I g s s T
§ & § <t 4 4 4 §
= v[e(Lo] v[E[L[9| v[E|Llo] v[e|Lo| v[e(Lo| v[e(L9| vE|LI9 vELI9
T=
. £210 £210 b— £210 b— £210 b— £210 b— £210 £210 b— £210 b—
angeco | anseo | 5488 Rp—| 5838 Rp— | 5838 Rp— | 5888 Rp— | 8838 Rpr— | 5838 R p— | 5838 R pr— | 5858 Rp—|
900 oo sva pg sva P2 sva g svd g svg g sva pg sva P8 svd g
Q 6 6 6 Q Q 6 6
£ B —mnr 85w S & 85 B B —mnr & B g T
ov - ov = ov - ov - ov - ov - ov - ov -
[0} 6 0T 6 0T 6 [0 6 [0} 6 [0} 6 [0} 6 o1 6N
av v 1 v 1 v 1 av 1 v 1 v v 1
= >N v v (928 2y 9281 o~ 81 i . v 1 v 2v [9c BT
T v A T v 5 ov = oV o7 ov ov ov =
j SV Sv = Sv SV SV = SV Sv Sv N
v v = w w v 1 v v w
ange 0 ange 0 v .
&v &v &v ev &v 1 &v &v ev
2650 6650 .
ov ov o o ov = ov ov o
& ¥ v v & [& ¥ v .
ov O / ov O / oV O/ ov OTwA / ov O / ov O / ov O / oV O /
FNT AT FNT AT FNT v NT TOvaa HNT vEd HNT vEd TRNT T TNT v
0N Losn 90sn sosn rosn €osn zosn ToSN oosn

0 6) W

A-17

BIGRAM 8/32

ANVE AHONSIN HO IH

£33 [
£/
0 € EWMW
SR
m € 6 S I
. 4 b4 7 T 7 £
& s & <t <t g & &
&
= vlelzfo Eend vlelzfo vlelzfo vlelzfo vlelzfo viElf vl
e
. €210 €210 p—— €210 | o — €210 p— €210 p— €210 €210 p—— €210 p—
ange 0 \7! ange o \7! &448 Rp— &848 R o— &848 R p— &858 R p— &8&8 Rpr— | &858 Rp— | &848 R p—J &858 2 pr— |
sva bl sva bl sva pd sva pd sva pE sva bl sva p sva
SO P2 ensvo / SYO Pz a0 / SYO Pz zsvo / SYO Pz aevo / S Pz Thsvo / SO P2 Thsvo / SY9 Pz onsvo / SYO Pz oo /
6v 6v 6v 6v v 6v 6v 6v
Sh gv (2 LI gv QT & gy [T & av [2 av (2 gv (2 Ll av (2 H 8v [S A
= v £l v Qe & v [v v v £l v k] v [9E &
ov k ov H ov |5 ov ov ov E ov k ov S Al
j sv £ sv H sv Sv sv av £ sv L sv L
. v v v W I v w w
528 = M58 & & Y t e B & 2 2 & & & «H & BT—ANA
Tv H Tv H v (£ Tv H Tv Tv H Tv H v (£ T
ov N/ o N/ ov ¢ N oV N/ o NN o HYA o =¥ ov ¢ HN]
AT T T T NT v HNT W HNT v HNT WvEa TNT T HNT v
20N TEMN ogon 6z9N 8zon LZzon 9zon szon vzon
(0 6 HWA
=" Wh
Ll
0 EHSVO 7
©TeQa
1 s T
£ . B ¢ 1 T A £
& L & <t <t a &4 &
&
= vlelzfo pand vlelzfo vlelzfo vlelzfo vlelzfo vielfo vielfo
T=
19 - 10 20 pr— 10 0 pr— 10 0 pr— 10 = pr— 10 o 10 20 pr— 19 20—
angero | amzeo | 5838 R pr— | 5838 R br— 5838 R pr—| 5838 R pr— | 5858 3 pr— | 5838 2 pr—| 5838 2 pr—| 5838 R p— |
sva 6 sva 6 sva A sva 6 sva 6 sva 6 sva 6 sva A
S P2 enevo / SY9 Pz a0 / SO Pz aevo 7 SO Pz a0 / S P2 Thevo / S P2 Thevo / SY9 Pz onsvo / SO P2 oo /
v 6v 6v 6v 6V v 6v 6v
B o 1oz g1 ov g ov (82 ov 8 o o —a] ov o —a o o ov g
= v g H 2v @< v 3¢ v g v g H v g H v [2 L 2v 2 Al
ov fel ov oI ov |5 ov |5 ov el 2 ov el 2 ov eI ov oL i
sv [BI sv [BL o sv [sv [8 sv 81—t sv [BI sv [B1 ot v [SL o
4NEE "0 d4NEE "0 g A v o 4] v o wig g A paA) 1A v g 1A paAE:) HIAL
8190 9190 &y i & o & AN &Iy b &y i &I w & AL
ov [o ov [l ov & ov & ov (o ov o ov & oy o
£ + £ = s v £ w5 =+ w5 = s s
oV [T H\A oV OHWA / ov % OHWA / oV [OHWA / oV [OHWA / oV [F HYA / oV [T OHWN / ov % OHWN /
TNT T AT A T Ve HNT Ve T Ve TRNT TV TNT TV NT Ve
D0NA €zon zzoan TZ9N ozon 619N 81N 2T9N 9tToN
0 6 HW 7
1=/
I [
per==oxd
oTEXa
T s T
€ m wm 1 1 A >
& 3 & 4 d <! 4 &
&
= vlelzfo Eend vlelzfo vlelzfo vlelzfo vlelzfo vielfo vlelelo
-
£210 b £210 b— £210 b— £210 b £210 — £210 — £210 b £210 b—
ance o \7! ange o \7! §868 Rp— | §848 R p—J §&48 R p— §&48 R p— &§648 Rp— | &&48 Rpr— &&48 R pr— &&48 R p—
sva sva sva sva sva sva sva sva
= D —— Dl —— C— PN ———] s mm—— ECh ——— Dl ——
j S P—5ivs7 S P aevo 7 S P eV 7 S Pearsvo 7 SO Pe sV 7 2 THEVD / S P orevo 7 SO P orievo 7
ov ov ov ov ov ov ov ov
B ov o —a ov o ov Mo - ov For—a ov For—a ov o oY For gy
- v H 2y 98 v g e o H v H " L " A
= ov H ov H ov ov ov H ov H ov H ov A
j sv £ sv H sv sv sv H sv £ sv EH sv e
. Y Y v w w w w w
angeco | ange o i e i ¥ i o % 1 i e i ¥ i o
v v v v v v v v
v L v H v v v H v L v HL v HVA
ov HYN / ov OHWN / oV OHWNL / ov OHWA / ov A ov HYWN / ov HWN / ov OHWNL /
PINT Avaa PNT Avaa PINT Wvaa PINT Wvaa PINT Wvaa PINT Wvaa PINT Avad PINT Wvaa
I sTon vTon eTon zTon TTon oten (e ‘500
(0 "6 HWA
P="WA
O/
TS
©TEXQd
I g s s T
§ & § <t 4 4 4 §
= v[e(Lo] v[E[L[9| v[E|Llo] v[e|Lo| viE(L[9 vIE(LI9 vE|LI9 vELI9
e
. £210 £210 b— £210 b— £210 b— £210 b— £210 £210 b— £210 b—
anggro | amseg | 5838 2 pr—| 5838 2 pr—| 658 R pr—] 8658 R pr—] 658 2 pr— | 5638 R br— 5658 R pr—] 8658 R pr—]
sva pg sva P8 svd P8 Svd P8 Sva P sva pg sva P8 svdE P8
0 P aevo 0 P aevo 7 0 Pz aevo 7 S P aevo 7 0 P e 7 0 P Thevo 7 0 Peorevo 7 O Peorevo 7
ov ov ov ov ov ov ov ov
[0) | 0T | 0T H [6) =l [0 H [0} - [0} H{ 0T AL
av v v av av v v v
- 0N N H 2v 9 e 2v 92 2 H n H 4 H N H 2v 92 L
= ov H ov H ov ov H ov H ov H ov EL ov
j Ssv H Ssv H Sv Ssv Ssv H Ssv H Ssv H Sv i
v v w w v v v w
anges AngES ev H £v H £v v ey 2 £v L £v L £v L
ov ov o o ov ov ov 2 o
v H v H v v v o v H v H v i
ov HYN / oV OHWN / oV OHWAL / ov OHWA / ov A/ ov HYWN / ov HYWN / oV OHWNL /
FNT T FNT TV FNT v NT TOvad HNT vEd HNT vEd TRNT T TNT AT
fo o7 Loon 909N soonN roon €09N zoon To9N ooonN

T0 16 HWN

Appendices

A-18

A.3 Zorro Ill Configuration

While AmigaOS 2.0 understands Zorro Il AUTOCONRGonventions, the following
routine is useful for configuring simple Zorro 11l boards in an AmigaOS 1.3 system. Note that
many popular MMU configurations don’t map in the Zorro Ill configuration space at
$FF000000, so this program is not likely to work with an MMU mapping in place.

I* *

* A ver?/ simple configuration utility for Zorro Ill boards. This code will

con gure Zorro |llI" cards that are placed after any Zorro Il cards in _
the A3000. All configuration is done based on 16 meg slots and no magic
for autoboot, etc. */

#include <exec/types.h>

#include <exec/memory.h>

#include <libraries/configregs.h>
#include <libraries/configvars.h>
#include <libraries/expansionbase.h>
#include <stdio.h>

#include <ctype.h>

#include <functions.h>

I* */

/* Modified configuration information. */
[* Extensions to the TYPE field. */

#define E_Z3EXPBASE 0xff000000L
#define E_Z3EXPSTART 0x10000000L
#define E_Z3EXPFINISH OX7fffffffL

#define E_Z3SLOTSIZE 0x01000000L
#define E_Z3ASIZEINC 0x00010000L
#define ERT_ZORROII ERT_NEWBOARD
#define ERT_ZORROIII 0x80

/* Extensions to the FLAGS field. */

#define ERFB_EXTENDED 5L

#define ERFF_EXTENDED (1L<<5)

static BoardSlzeB& g‘
0x00800000,0x000 0000,0x00020000,0x00040000,
0x00080000,0x00100000,0x00200000,0x00400000 1
{ 0x01000000,0x02000000,0x04000000,0x08000000,
0x10000000,0x20000000,0x40000000,0x00000000 }

#define ERFB_QUICKVALID 4L
#define ERFF_QUICKVALID (1L<<4)

#define ERF_SUBMASK 0xO0fL
#define ERF_SUBSAME 0x00L
#define ERF_SUBAUTO 0x01L
#define ERF_SUBFIXED 0x02L

#define ERF_SUBRESERVE Ox0eL

static SubSize&lG% = B
0x00000000,0x00000000,0x00010000,0x00020000,
0x00040000,0x00080000,0x00100000,0x00200000,
0x00400000,0x00600000,0x00800000,0x00a00000,
0x00c00000,0x00e00000,0x00000000,0x00000000

#define PRVB(x)if (verbose) { printf(x); }

static BOOL verbose = TRUE;

static BOOL anyone = FALSE;

struct ExpansionBase *ExpansionBase;

static ULONG 3Space = OxlOOOOOOOL

I* *

/* These functions are involved in finding a Zorro Il board. */
[* This function reads the logical value stored at the given Zorro I

ROM location. This corrects for complements and the differing offsets
depending on location. */

BIGRAM 8/32 A-19

UBYTE ReadZ3Reg(base,reg)
WORD *base;
}NORD reg;

ULONG *Z3base;
UWORD result;

if (base == (WORD *)E_EXPANSIONBASE) {

base += (reg>>1);
result = 2*base++ &0xf000)>>8;
result = ((*base)&0xf000)>>12;

Z3Ease = (ULONG *)(base+(reg>>1));
result = (E* 3base)&0xf0000000§>>2 ;

result |= ((*(Z3base+0x40))&0xf0000000)>>28;
if (reg) result = ~result;

) return (UBYTE)result;

/* This function types the board in the system, returning the type code.
There are four possibilities -- no board, a Zorro Il board, a Zorro Il
board at the Zorro Il configuration slot, and a Zorro Il board at the
Zorro |l configuration slot. */

#define BT_NONE 0
#define BT _Z2 1
#define BT_Z3 AT _Z2 2
#define BT_Z3"AT Z3 3

BYTE Ty;?eOfPIC() {
UBYTE

e;
UWORDtynganf;

type = ReadZ3Reg(E_EXPANSIONBASE,0x00);
manf = ReadZ3Reg(E_ EXPANSIONBASE,0x10j<<8 | ReadZ3Reg(E_EXPANSIONBASE,0x14);

if (manf I= 0x0000 && manf != Oxffff) {
if ((type & ERT_TYPEMASK) == ERT ZORROII% return BT _Z2;
if ((type & ERT_TYPEMASK) == ERT_ZORROIll) return BT Z3 AT Z72;

type = ReadZ3Reg(E_Z3EXPBASE,0x00):
manf = ReadZ3Reg(E_ Z3EXPBASE,0x10j<<8 | ReadZ3Reg(E_Z3EXPBASE,0x14);

if (manf != 0x0000 && manf = Oxffff)
if ((type & ERT_TYPEMASK) == ERT_ZORROIll) return BT_Z3_AT_Z3;

} return BT_NONE;

/* This function fills the configuration ROM field of the given .
CcI)nﬂgIQ/ev, form the given address, based on the appropriate mapping
rules.

void InitZ3ROM(base,cd)
WORD *base;
{struct ConfigDev *cd;

struct ExpansionRom *rom;
rom = &cd->cd_Rom;

rom->er_Type = ReadZ3Rea(base.0x00);

rom->er_Product = ReadZ3Reg(base,0x04);

rom->er_Flags = ReadZ3Reg(base,0x08);

rom->er_Reserved03 = ReadZ3Reg(base,0x0c);

rom->er_Manufacturer = ReadZ3Reg(base,0x10)<< 8 | ReadZ3Reg(base,Ox14%;
rom->er_SerialNumber = ReadZ3Reg(base,0x18)<<24 | ReadZ3Reg(base,0x1c)<<16 |
ReadZ3Reg(base,0x20)<< 8 | ReadZ3Re (base,0x24f;

rom->er_InitDiagVec = ReadZ3Reg(base,0x28)<< 8 | ReadZ3Reg(base,0x2c);
rom->er_ReservedOc ReadZ3Reg(base,0x30);

rom->er_Reserved0d ReadZ3Reg(base,0x34);

rom->er_ReservedOe ReadZ3Reg(base,0x38);

rom->er_ReservedOf ReadZ3Reg(base,0x3c);

}

/* This function locates a Zorro Il board. If it finds one in the
unconfigured state, it allocates a ConfigDev for it, fills in the
configuration data, and returns that ConfigDev. Otherwise it returns
NULL. It knows the basics of what to do should it encounter a
Zorro |l board sitting in the way. */

struct ConfigDev *FindZ3Board() {
struct ConfigDev *cd;

while (TRUE) {
if (!(cd = AllocConfigDev())) return NULL;

A-20 Appendices

swnch (TypeOfPIC()) {

FreeConflgDev(cd)
return NULL

case BT Z
PRVB(FOUND Z2 Board, Conflgurll\?
if ('ReadExpansionRom(E_| EXPANSIONBASE ,cd))

if (IConfl% oard(E_EXPANSIONBASE cd))
Add onflgDev(cd)

anyone = TRU
break;

case BT 73 AT 72 :
PRVB("FOUND: Z3 Board)&2 Space), Configuring");
InitZ3ROM(E_EXPANSIONB, E)
cd->cd_BoardAddr = (APTR)E_EXPANSIONBASE;
anyone = TRUE;
return cd;

case BT 73 AT 73 :
PRVB("FOUND: Z3 Board (Z3 Space), Configuring");
InitZ3ROM(E_Z3EXPBASE,cd);
cd->cd_BoardAddr = (APTR)E_Z3EXPBASE;
anyone = TRUE;
return cd;

}
}
return NULL,;

*/

/*
/* These functions are involved in configuring a Zorro Il board. */

/* This function writes the configuration address stored in the given
ConfigDev to the board in the proper way.

void WriteCfgAddr(base,cd)
UWORD *base;
{struct ConfigDev *cd;

UBYTE nybreg[4],bytere d%[2] *bytebase;
UWORD wordreg,i,*wordbase;

wordreg = (((ULONG)cd->cd BoardAddR»lG);
bytereg[0] = (UBYTE)(wordreg & O0x00ff);
bytereg[1l] = (UBYTE)(wordreg >> 8);

nybreg[0] = ((bytereg[0] & O0x0f)<<4);
nybreg[1l] = ((bytereg[0] & O0xf0));

nybreg[2] = ((bytereg[l] & 0xO <<4)

nybreg[3] = ((bytereg[l] & O0xf0));

bytebase = (UBYTE *)&base + 223;
wordbase = (UWORD *)(base + 22)

if (base == (UWORD *)E_ EXPANSIONBASE) {

*(bytebase+0x002)) = nybreg[2
*(bytebase+0x000)) = bytere 5
*(bytebase+0x006)) = nybre%
S l{)ytebase+0x004 = bytereg[]
else
*(bytebase+0x104)) = nybreg[0];
*(bytebase+0x004)) = bytere 5]
*(bytebase+0x100)) = nybreg[2]
*(wordbase+0x000)) = wordreg;

}

/* This function automatically sizes the configured board described by the
given ConfigDev. It doesn't attempt to preserve the contents. */

void AutoSizeBoard(cd)
{struct ConfigDev *cd;

ULONG i realmax,logicalsize = O0;
realmax = ((ULONG)cd->cd_SlotSize) * E_Z3SLOTSIZE + (ULONG)cd->cd_BoardAddr;

for (| (ULONG;():d >cd BoardAddr; i < realmax; i += E_Z3ASIZEINC)

((LONG
for (i = (ULONG cd >cd BoardAddr; i < realmax; i += E_Z3ASIZEINC) {
if (*(ULON 1= 0) break;
*(ULONG &I) = Oxaa 500ff;
(*((ULON i) 1= 0xaa5500ff) break;

) IoglcaIS|ze += E_Z3ASIZEINC;
cd->cd_BoardSize = (APTR)logicalsize;

BIGRAM 8/32 A-21

/* This function configures a Zorro Il board, based on the initialization
data in its ConfigDev structure. */

void ConfigZ3Board(cd)
{struct ConfigDev *cd;

APTR base = cd->cd_BoardAddr;
UWORD sizecode,extended,subsize;
ULONG physsize,logsize;

char *memname;

/* First examine the physical sizing of the board. */

cd->cd_Rom.er_Ty'Pe & ERT_MEMSIZE;
((cd->cd_Rom.er_Flags & ERFF_EXTENDED) != 0);

sizecode
extended

physsize = BoardSize[extended][sizecode];

cd->cd_BoardAddr (APTR)Z3Space;

cd->cd_BoardSize (APTR)physsize;

cd->cd_SlotAddr = (Z3Space-E_Z3EXPSTART)/E_Z3SLOTSIZE;
cd->cd_SlotSize = ((physsize/E_Z3SLOTSIZE)>0)?(physsize/E_Z3SLOTSIZE):1;
Z3Space += cd->cd_SlotSize * E_Z3SLOTSIZE;

/* Next, process the sub-size, if any. */

if (subsize = (cd->cd_Flags & ERF_SUBMASK))
cd->cd_BoardSize = (APTR)SubSize[subsize];

if (verbose) {
BOARD STATS:");

rintf("
Brintg") ADDRESS: $%lx",cd->cd_BoardAddr);
if (cd->cd_BoardSize))
| printf(" SIZE: $%Ix",cd->cd_BoardSize);
else
printf(" SIZE: AUTOMATIC => ");

}
/* Now, configure the board. */

WriteCngddr(base,_cd%;

if (‘cd->cd_BoardSize) {

AutoSizeBoard(cd);
printf("$%Ix",cd->cd_BoardSize);

if (cd->cd_BoardSize && (cd->cd_Rom.er_Type & ERTF_MEMLIST)) {I
strcpy(memname = échar *)AllocMem(20L,MEMF CLEAR),"Zorro |1l Memor&/");
AddMemList(cd->cd_BoardSize, MEMF_FAST|MEMF_PUBLIC,10,cd->cd_BoardAddr,memname);

) AddConfigDev(cd);

* *

/* This is the main program. */

void main(argc,argv)
int argc;
f{:har argv[];
int i
struct ConfigDev *cd;
if (!(ExpansionBase = (struct ExpansionBase *)OpenLibrary("expansion.Iibrary",OL))) {

printf("Error: Can't open "expansion.library"™);
exit(10);

A) switch_(toupper(argvii[o]) {
or (i = 1; i < argc; ++i) switch (toupper(argvi
case 'Q: vgrbose = FALSE; plg)reak;g
case 'V': verbose = TRUE; break;

}
while (cd = FindZ3Board()) ConfigZ3Board(cd);

if (lanyone) PRVB("No PICs left to configure");
CloseLibrary((struct ExpansionBase *)ExpansionBase);

A-22 Appendices

