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Forward

It's the end of the world as we know it, and I feel fine
- R.E.M.

This paper is a concerted effort to define and document a new, advanced Amiga system 
architecture.  It represents the authors' best proposal for such a system based on their numerous 
years of designing computers and defining system architecture at Commodore.  It is also the 
result of numerous consultations with Amiga experts in various areas of expertise, including 
those involved in chip and software design as well as hardware design.  We are, after all, defining 
a system architecture here.

Since this is an architecture specification, there's a considerable amount of material to 
cover before any actual system is described.  If you're more interested in a bottom line answer to 
“what does all this give me”, please feel free to skip ahead to Chapter 8.  But please keep in mind 
that the system described in Chapter 8 is one possible suggested chip/system implementation of 
the architecture.  One main point of this new design is that any number of different system 
configuations are possible based on the same system chips.

I hope that this point isn't lost.  Commodore has a bad habit of stumbling blindly into new 
system designs, taking just enough time to prevent a fall.  This makes system designs that are 
really viable for only one system.  I started this effort over a year ago in an attempt to get 
something better than that down on paper, all thought out, before it was actually needed.  I hope 
the implementors of this, whomever they turn out to be, can appreciate this and avoid chopping 
out features just because they aren't clearly needed for one system.

Dave Haynie
October 23, 1991
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Chapter 1
Introduction

The original 68000-based Amiga systems were designed with the philosophy that the 
main components of an Amiga system could be part of a reasonably small number of custom 
integrated circuits.  This would facilitate both lower system cost and higher system performance 
than traditional TTL based designs.  At the time, it came very close to achieving this goal.

Since that time, there has been more system design work aimed at building Amiga 
systems of increasing power without any loss in the price/performance ratio of the system.  The 
Amiga 3000, the lastest example of this design effort, comes in as a very high performance 
68030 system at a personal computer price.

However, the rest of the world has not been standing still.  The techique of “design by 
chip” has been picked up by most computer companies, as chip design firms release highly 
integrated system glue parts for large subsystems in standard architectures, and gate arrays 
continue to grow in size and drop in price.  The rules of competition have been rewritten.  Thus, a 
corresponding rewriting of Amiga system architecture is required to create new Amiga systems 
that do well on the industry-wide price/performance curve of the 1990's.

As the system architects of the Amiga 3000, we are in the best position to evaluate the 
shortcomings of the A3000 and propose a replacement architecture, no one else knows Amiga 
systems design better.  We mention the A3000 simply because it is currently the architectural 
basis for all mid and high end Amiga systems.  We acknowledge the reality that  today, the 
“high-end” price point necessary for viable competition should be below the A3000 levels for an 
entry level high end system.  Our competition makes this perfectly clear.   

1.1 The Shortcomings of Previous Systems
  
This docment describes the Acutiator Architecture.  While this is an architecture 

specification, not a system specification, we do intend to get some details of the basic system 
chip set, and examine some system designs based on this system chip set.

We find a few problems with the current high-end Amiga hardware architecture.  One of 
the main problems is that it isn't modularized.  We based a great deal of the partitioning of the 
A3000 system on what had  been done in second generation Amiga systems. and also on the 
available resources, in manpower and chip technology, available in 1989.  We find the A3000's 
expansion bus controller responsible for motherboard bus arbitration, and the A3000 
motherboard controller responsible for a good bit of the Amiga chip interface.  While that 
worked reasonably well for the A3000 initially defined, it's not easy to modify this setup.  A 
system without an expansion bus needs to provide its own arbiter for the main bus. A system 
using an “AAA” display subsystem completely bypasses the chip bus control logic in the 
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motherboard controller.

Another set of problems with the A3000 are found in its I/O chip definition.  While all the 
A3000 system chips work pretty well to build an A3000 as defined, they make it costly to deviate 
from this definition.  Adding any additional I/O around the A3000 custom chips add considerable 
expense in fast PAL devices.  For example, the Amiga 4000 uses the A3000 architecture with  an 
IDE hard drive interface rather than the fast SCSI of the original system.  Yet, with the cost of 
hooking IDE into the A3000, this is not a great cost savings -- IDE should be virtually free of 
cost.

The other problem with the current architecture is that of performance.  While the Amiga 
3000 is a good representative of a 68030 system, it makes some performance compromises.  
Memory and SCSI, for example, have improved considerably since then.  Most of these were 
well understood and considered necessary, based on the available technology at the time of the 
system's design.  Today, they can be overcome, and with a proper new architecture, room for 
such advances can be properly made in advance, rather than ignored or hacked in at a later date.

1.2 The Acutiator Architectural Goals

The main idea of the Acutiator Architecture is to define some system building blocks for 
building high performance 68040 systems that can also meet some low cost goals.  Toward this 
end, things are designed to be modular.  The architecture doesn't depend on the specific kind of 
Amiga chip set.  It defines an interface device that encapsulates any specifics of the chip set 
architecture, eliminating the need to consider this in the rest of the system.  Given the rapid 
advance of both CPUs and Amiga chips these days,  it is possible we will have  Acutiator 
systems using “AA”, “AA+”, and “AAA” graphics chips, with 68040, 68060, and even RISC 
host processors.

For motherboard management, the Acutiator Architecture defines a motherboard 
controller.  This device generates chip selects for stand-alone chips, such as general I/O, IDE, 
SCSI, or LAN controller units.  It manages arbitration of the compact CPU-independent 
“System” bus, providing general purpose bus channels that may be used for CPU, DSP, SCSI, 
Zorro bus, and other expansion.  It does the bus sizing necessary to let modern 32-bit and 64-bit 
bus masters communicate with standard 8 or 16-bit peripherals.

The CPU-bus specifics are encapsulated on the processor module.  This module provides 
a system bus interface for the main CPU, and also drives the DRAM bus.  The DRAM bus 
controls a DRAM subsystem located on the motherboard, yet all control signals originate on the 
main CPU module .  This permits the memory interface to be optimized for the particular main 
processor, perhaps the most critical performance element in the system.  The DRAM bus is a 64-
bit bus with support for interleaved memory banks and a large amount of SIMM module based 
page-mode memory of just about any speed.

Finally, the optional expansion bus device manages high speed conversion between 
System bus protocols and the Amiga Zorro II/Zorro III bus, including all necessary buffering, 
synchronization, and bus sizing.  This is designed to make the full 32-bit Zorro III bus a much 
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lower cost system option, and much easier to remove from systems that don't require expansion.

Acutiator is the first complete Amiga system level design that was architected with both 
modulatity and flexibility in mind.  We found that building mid-range systems from A3000 
system chips, for example, actually required extra parts, since the A3000 system chip set was 
designed specifically to make A3000s.  Acutiator chips will permit a number of different systems 
to be created using the same chip set, without the need for extra glue at either the low or high 
end.  In fact, one highly modular Acutiator-based platform can easily fill both mid and high end 
requitrements.  The system designer can build a mid-range system with little more than Acutiator 
chips, Amiga chips, memory, and buffers.  High end systems simply bolt on extra modules, like 
DSP, SCSI, or Expansion Bus, as the system specification demands.  Modules can be supported 
either as motherboard interconnects or actual add-in cards with very low interface overhead 
compared to full fledged Zorro bus cards.

1.3 Basic Assumptions

There are obviously a few basic assumptions about available resources inherent in the 
Acutiator specification.  Of primary concern is the definition of the various system chips required 
in an Acutiator system.  While the chip architectures aren't necessarily tied to the 
implementations suggested herein, we do consider the suggested implementations to be optimal.  
The three proposed gate arrays represent a compromise between cost effectiveness and 
agressiveness.  The functionality of a gate array can, within limits, rise non-linearly with pin 
count.  However, the price point of a gate array is determined by gate count and packaging, 
which tends to run contrary to function density.  

As far as packaging goes, the costs rise sharply when the design is too large to fit in a 
plastic package.  Using commonly available surface mount PQFP package sizes, we set a limit of 
160 pins on any given part.  This limit also works out to fit in well with our goal of the nicely 
modularized chip implementation, necessary to properly implement a modular platform.  Since 
most of the content of each Acutiator system chip is devoted to control logic and data routing, the 
gate densities in the range of 20,000 gates should be sufficient for any Acutiator chip.  Finally, 
speed requirements will make 0.8um-1.0um CMOS capability necessary.

1.4 A Note To Implementors

This is, of course, a preliminary specification.  If you're designing a particular chip or 
piece of a chip, you have some significant input on the nature of what you're designing.  If 
something seems wrong, maybe it is.  But please don't fix it secretly.  Propose the changes to the 
Acutiator design committee, or, in the absence of such a committee, tell Dave Haynie what you're 
changing.  This specification could influence the work of lots of people for a long time.  We don't 
want any nonsense creeping in or left in, but we want to make sure any who should know what's 
going into these chips does know.  The only way that can happen is if we keep the specifications 
current. 

Each chip has its own  chapter, and elements of them are described elsewhere.  If you're 
building a chip and willing to keep the documentation up to date as a part of the Acutiator 
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specification, feel free to take over ownership of your particular chapter.  If not, Haynie will 
maintain them as before.  If you're desigining a chip, you will need to write a full specification 
for it, so there may be a good starting point in the associated chapter in any case.  Should we split 
up the documentation this way, it'll be important to keep the specification up to date as things 
change, no matter how busy it gets actually doing the work.  A good Amiga DTP system at hope 
may be a big hand here.

1.5 A Note To Reviewers

If you have been asked to look this over, please do with as much care as possible.  
Certainly not every reviewer is going have expertise in every area, but at least try to make sure 
that the areas you do have thoughts on get some attention.  Even if you're reviewing this without 
specifically being asked, we'd appreciate any feedback.  There's usually something that looks like 
a good idea to some and pure folly to others.   The goal is to have this whole specification, and 
the chips it helps generate, seem like good ideas to everyone who comes across them.
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Chapter 2
The Acutiator System

An example Acutiator system diagram is shown below in Figure 2-1.  This is 
representative of a system with many of the supported options, though its certainly just one way 
to assemble a complete Acutiator system.  The display subsystem is not specified -- it could be 
the “AA” chip set, “AAA”, XGA, TIGA, or virtually anything else).  An interface chip 
encapsulates the specifics necessary to mate any custom chip subsystem to the AMI bus.

The example system shown consists of the Amiga chip subsystem, three off the shelf 
main bus masters, and four new Commodore designed gate arrays.  There are also some buffers 
and a few external glue logic chips.  Some other desired I/O devices can be accomodated via 
programmable I/O selects or slight modifications to the particulars of the system chips suggested 
herein.

2.1 The AMI Bus

The Acutiator system is centered around the Acutiator Modular Interconnect, or AMI bus, 
rather than any CPU-specific Local bus.  It's important in any large system, such as Acutiator, 
that the designs generated be as modular and reusable as possible.  The bus interface could 
certainly be processor specific, but in the past this hasn't proven to be optimal.  The Amiga 3000 
gate arrays, for example, were MC68030 bus-specific.  Little to none of their design can be 
reused on the Acutiator project, most of it was based around MC68030 specifics that aren't very 
easy to support with other 680x0 chips, RISC chips, etc.  The other problem is that the full 
MC68030 bus took too many pins on a gate array to fully support in each part, so compromises 
were made in the system design to deal with this.

The AMI bus is based somewhat on the  MC68040 bus protocols.  However, the bus uses 
multiplexed Address/Data and Master/Slave signal groups to provide a much more compact 
interface, ideal for chip to chip interconnects.  It also supports enhancements to allow it to mesh 
cleanly with alternate processors such as DSP or SCSI, as well as future MC680x0 or RISC 
processors, including 64-bit processors.  Even the MC68020 or MC68030 can drive the AMI bus 
with a minimum of glue logic.

The definition of such a generalized high speed interconnect has been a target goal of the 
Systems group since before the MC68040 was released; it allows system designs to be reused 
much more readily, and it opens the door to highly modularized systems impossible or 
impractical using past interchip interconnects.  Such a highly modular Acutiator system will not 
have any processor-specific bus, only AMI bus slots and a RAM interface slot.  More compact 
non-modular systems can still run a processor bus on the motherboard with no loss of system 
efficiency.   A full specification of the AMI bus is provided in Chapter 7.
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Figure 2-1: Example Acutiator System Block Diagram
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2.2 The Host Subsystem

All Acutiator systens will have some kind of Host subsystem.  There are a couple of 
possible physical implementations of the Host subsystem.  There always be some kind of main 
processor, which is the primary bus master on the Host, or Local Bus.   In most cases, a local bus 
controller will permit alternat local bus masters, and drive the interface for the particular Local 
Bus to AMI bus conversion.  The Local Bus can be located on the motherboard, but in any 
modular system it exists only on an AMI bus card.  Such a modular system will have a “host” 
slot, which is the  standard AMI bus slot in-line with a 64-bit DRAM bus slot.

The initial Acutiator system has the primary goal of supporting a fast MC68040 CPU.  To 
this end, it defines a Host/Memory Controller device that interfaces the MC68040 bus to the 
Acutiator DRAM bus and AMI bus.  This device is designed to support all forms of the 
MC68040 at 25MHz to 40MHz.  It is expected to provide support for the standard MC68040, the 
MC68LC040 (low-current mode only, no FPU), and optionally, the MC68030 and MC68020 (of 
possible concern for low cost implementations).

Some host modules will also contain alternate processors.  There may be some advantage 
to locating certain kinds of processors on the MC68040 (or other host-specific) local bus.  The 
AMI bus is designed for simple and flexible interface to a variety of 32-bit processors, but 
obviously, any device designed specifically for the MC68040 bus will work better on the 
MC68040 bus.

2.3 Alternate Processors

The Acutiator system supports various alternate processors.  The example shown locates 
two alternate processors on the host module, but it's possible to have such devices on the AMI 
bus just as easily.  In some cases the host module can make such devices easier to add, while the 
AMI bus makes the modularization of such devices easier.  It's the job of this architecture to 
leave such a decision to the system designer.  This sections covers some suggested module 
options.

2.3.1 Other Host Processors

The Host/Memory controller device is responsible for the host processor implementation.  
For efficiency and cost reasons, such a controller device is specified as a gate arrary for the initial 
instance, the MC68040 version.  Neither the memory nor the AMI bus interface is necessarily so 
complex as to require an integrated solution, though.  Alternate processors can generally be 
hooked to the AMI bus and/or DRAM bus with a small number of PAL and buffer devices.

Host processors can follow the MC68040 convention of actively requesting the bus when 
its needed.  A programmable parking option permits easy support of the MC68020/30 convention 
of acting as a default bus master.  System-wide support of various burst lengths allows both 32-
bit and 64-bit processors to easily hook up to both the AMI bus and the 64-bit DRAM bus.  Most 
of the AMI bus protocols, while derived from MC68040 conventions, are easy to generate for 
other processors.
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2.3.2 The SCSI Processor

DMA-driven SCSI disk I/O is an important option for high performance Acutiator 
systems.  Several possible SCSI controllers may be easily hooked into the system.  For high 
performance we recommend the NCR 53C710 SCSI-2 controller, which can be interfaced to 
either the AMI bus or an MC68030/MC68040 Local bus.  This controller handles SCSI far more 
efficiently than traditional Amiga SCSI, both via SCSI transfers far more efficient than a Western 
Digital SCSI chip, and by offloading main processor overhead via an on-chip programmable 
SCSI processor.  It supports the SCSI-2 protocol, including 10MB/s fast synchronous mode.  
Alternately, an 8-bit programmed I/O SCSI chip may be attached to the I/O bus, for a very low 
cost, low performance SCSI interface.  The I/O bus can also support a nearly glue free IDE bus 
implementation.

2.3.3 The Signal Processor

A signal processor is a vital option for Acutiator Multimedia systems.  The AT&T 
DSP3210 is a low cost, high performance bus mastering signal processing coprocessor ideally 
suited to the Amiga hardware/software architecture.  This processor has two main functions.  As 
a mathematics engine, it can process single-precision floating-point up to ten times faster than a 
standard MC68040 running optimized 68040 code, or as much as fifty times faster than a 68040 
running Amiga IEEE libraries or 68030 floating-point code.  The standard AT&T software 
modules provide, in the context of a real-time multitasking operating kernel, a great number of 
standard functions, including sampling rate conversion, JPEG decoder, and both audio and video 
MPEG decoders, with many other modules available optionally.

 As an I/O processor, the DSP3210 has a very efficient interface to a high speed serial 
bus, which supports peripherals such as CODECs for CD and DAT compatible hi-fi audio, 
standard high speed telecommunications protocols such as V.32, or standard digital audio 
transfer protocols such as AES/EBU.  The DSP3210 will be a crucial addition to any Amiga 
system intended for Multimedia authoring.  Most such computers will employ DSP within the 
next two years, we know of nothing at any price that integrates under any other hardware/OS 
combination as well as this subsystem.  A DSP3210 can be easily interfaced to either the AMI 
bus or a MC68030/MC68040 Local bus.

2.3.4 The Video Compression Processor

Another device worthy of consideration in an Acutiator system is a video compression 
processor.  Modern multimedia computing has found an increasing need for high speed video 
record and playback from low bandwidth mass storage such as CD-ROM.  The DSP can provide 
fast but non-realtime encode and decode of such compressed imaging.  For realtime operation, 
compression processors may often be interfaced directly to the motherboard I/O bus, while a 
compression processor with bus mastering capability would find a good home on the AMI bus.  
This is a very active field at present -- solutions are emerging from several different companies.  
No particular recommendation for video compression processor is made in this specification.
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2.4 The Motherboard Subsystem

All Acutiator systems are centered around a Motherboard subsystem.  The goal of the 
Motherboard subsystem is to provide all of the services necessary to any basic Acutiator system, 
without supplying any options that won't be used by all board implementations.  This includes 
DRAM and standard I/O management, with room for simple I/O options that vary by 
Motherboard implementation.  A modular Acutiator motherboard will have AMI bus slots, a 
single DRAM bus slot, and some special I/O bus slots for routing specific-purpose signals 
between the motherboard and at least some AMI bus modules.  Non-modular systems can 
arrange things however they see fit, but in general, very little glue is necessary for a wide variety 
of possible configurations.

2.4.1 The Motherboard Controller

The Motherboard Controller is responsible for managing just about everything that goes 
on a modular motherboard.  Its main features are as follows:

• Main arbiter for AMI bus access.
• Interrupt manager and arbiter for vectored interrupts
• Chip selection for all motherboard ROM and I/O, with a flexible programmble 

select system.
• Peripheral bus interface for 8-bit I/O devices.
• SSPB serial bus for simple serial I/O (I2C, InterMetal, Access.Bus).
• Multiprocessor control port for AMI bus residernt alternate processors.
• System reset management.

This device allows a system to be constructed that follows the strict Amiga philosphy of 
“no waiting”, yet it has nothing specific to the traditional Amiga chipset to it.  For example, using 
the programmable I/O selects, a complete UNIX machine could be constructed with a MC68040-
base host module, the Motherboard Controller, a 32-bit SIMM memory module, a few buffer 
chips, a boot ROM, and off-the-shelf disk and video chips.  This could also be used to make low 
cost non-video Amigas with standard parts once an RTG subsystem exists for the Amiga OS.

2.4.2 The DRAM Bus Slot

The Acutiator system tries to walk a fine line between low cost, high performance, and 
flexibility.  The AMI bus provides decent performance for most things and permits chip to chip 
interfaces that are low cost, full featured, and CPU independent.  The one place in any system a 
processor-specific interface can have the most beneficial performance effect is the DRAM 
interface.  Toward this end, modular Acutiator systems have a special DRAM slot.

This DRAM slot provides for a 64-bit DRAM bus with up to 128MB of fast, interleaved, 
SIMM-based memory.  This slot is expected to be provided in-line with the first AMI bus slot, 
the “host” module slot.  The host module can thus optimize the DRAM interface for the host 
processor without the need to house space-consuming DRAM on every host module.  The host 
module is responsible for running AMI bus to DRAM bus accesses.



2-6 Chapter 2: The Acutiator System V7.1

2.4.3 The AMI Bus Slots

As with most mid-to-high-end Amigas, the Acutiator systems support the basic idea of a 
coprocessor slot.  This slot provides a number of signals for high-speed system enhancements. 
Unlike previous Amiga systems, the Acutiator Modular Interconnect, or AMI bus. is fully 
buffered and optimized for chip to chip interconnects.  This permits several open AMI slots, 
rather than the single [co]processor slot of the A3000/A4000.  The AMI bus slot is, as described, 
this more general purpose high speed modular expansion bus.  It allows additional CPUs to be 
added in multiprocessor clusters.  It allows the addition of more AT&T DSP3210 processors, or 
the addition of the first DSP3210 in a base system that leaves that processor out.  This slot 
technically also permits the addition of more fast 32-bit memory (though never as fast as that on 
the 64-bit DRAM bus), though with up to 128MB supported by the motherboard, other uses are 
more likely.  

Perhaps more interestingly, Acutiator system chips, with the exception of the basic 
System Controller, can live on an AMI bus card as easily as on the motherboard.  This is another 
feature that makes possible the concept of a highly modular system, such as that outlined in 
section eight.  Highly modular Acutiator machines will have several AMI bus slots.

2.4.4 Other Motherboard Slots

While some other subsystems obviously define slots of their own, some Acutiator 
systems will have additional motherboard expansion slots.  Specifically, highly modular systems 
will leave video and some other I/O off the motherboard.  To facilitate the addition of these items 
via modules, extra expansion mechanism are necessary.  There are two basic types of I/O support 
slots envisioned.  The first of these will bring out the general purpose I/O bus defined by the 
Acutiator system controller.  This will allow some kinds of I/O devices to be added in modules 
for much less cost than in a general purpose expansion card.  Things considered basic 
motherboard extensions in a highly modular Acutiator system can go here, most expansion still 
belongs in Zorro cards.  

The other type of I/O support slot needed is essentially a slot with most of the  the 
motherboard I/O lines available on it.  This allows the various I/O signals, like floppy ports, CIA 
port lines, digital video, etc. to be drawn from different modules and routed to where they're 
needed in the system.  In some cases, two modules need only communicate with one another.  In 
this case, its expected that they'll cable between one another rather than route through the 
motherboard.  This allows things like digital video expansion slots, pixel bus expansion slots, or 
things we haven't even imagined yet to be added to existing Acutiator systems via new modules.  
These generally, but not exclusively, pertain to Amiga chipset expanison options.  The final 
physical form of this expansion depends on the final physical form of an Acutiator system itself.

2.5 The Amiga Chip Subsystem

The Acutiator's chip bus is managed by the Amiga Chip Controller device.  This device is 
completely responsible for gating the AMI bus master onto a Chip bus.  It manages all Chip-
related memory decoding, data burst, buffering, latching, cache control, and cycle termination for 
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its target Amiga chip subsystem.  In general, such a device can greatly enhance the processor to 
Chip RAM bandwidth of an Amiga system versus typical Gary plus PAL interfaces used today.

Different versions of the Amiga Chip Controller will exist for each Amiga chip set we 
would like to connect to an Acutiator system.  I expect  the emphasis today to be primarily on the 
AAA chip set, but there's nothing mandating only AAA systems.  The AAA chipset is designed 
to work well with 32-bit systems, and as such should connect to the AMI bus using just the AAA 
version of the Amiga Chip Controller and perhaps a small number of buffers or latches.

The AA Chips could just as easily be connected to the AMI bus, given an AA version of 
the Amiga Chip Controller.  For such an implementation, though, we suggest the help of a second 
simple gate array, the complex buffer device. This device manages the data path between the 
System Bus, the Chip bus, and two 32-bit wide banks of DRAM.  Together, these chips manage 
all data bus bridging and sizing, write latching and burst access to Chip RAM, and a special 
interleaved access that gives the Acutiator System Bus master a path to Chip RAM roughly twice 
that of the Amiga 3000, even when full video saturation takes place.  With proper I/O Bus 
support on the motherboard, the Amiga Chip Subsystem can comfortably live as an a module in a 
highly modular Acutiator system.

2.6 The Expansion Subsystem

For systems with an Expansion bus, the Expansion Controller manages conversions 
between AMI and Zorro bus protocols.  This includes all the buffering and bridging necessary to 
support the 16-bit Zorro II bus, Zorro II DMA onto the AMI bus, the 32-bit Zorro III bus, and 
Zorro III DMA onto the AMI bus.  The Zorro III protocol converter uses a four word 
bidirectional FIFO to effectively pipeline the bus protocol conversions when burst-mode 
transfers are made between the AMI bus and the Zorro III bus.  This device also provides an 
efficient DMA controller intended for, but not limited to, high efficiency transfers between the 
AMI and Zorro buses.  With proper motherboard or Amiga module video bus support, the whole 
Expansion Subsystem can live comfortably as an add-in module.

2.7 Memory Organization

The system memory configuration depends largely on the system configuration and 
initialization.  Most system I/O lives in reserved 64K I/O slots, located in the standard I/O areas 
used in previous Amiga systems.  ROM and Chip RAM have compatibility locations as well as 
extended mappings, and Chip RAM's extended mapping can be any 16MB region of memory, 
though a suggest region is shown.  Fast RAM can as well be assigned a memory address, though 
a suggested one is shown.  Several Zorro III mappings are also available.  AMI bus slots are 
given fixed 16MB memory chunks and 64K I/O chunks.  A memory map showing most of the 
possible memory areas is shown in Figure 2-2.
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Figure 2-8: Example Acutiator System Memory Map
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Chapter 3
The Motherboard Controller

The Motherboard Controller device is the main bus controller for the Acutiator system.  It 
manages all aspects of the non-Amiga-chipset-related motherboard operation.  This device 
replaces and enhances some of the functions of the Amiga 3000 system chips Gary, RAMSEY, 
and Buster.  The specification is intended to permit low cost Amiga systems to be designed 
around a common, high-speed chip interconnect bus (the AMI bus), while at the same time 
affording the system designer more control of actual system component makeup than the Amiga 
3000 architecture easily permitted. 

This chapter first describes the basic signal and functional requirements of any Acutiator 
Motherboard Controller block, then specifies a preferred implementation, the AMOS chip.  
Finally, the register map for the AMOS chip is provided, with a list of the register assignments 
and functions associated with these requirements.  There is some room for pinout flexibility in 
alternate implementations and, similarly, some register map flexibility.

Perhaps the most unusual aspect of this controller, in relation to previous Amiga 
motherboard control devices, is its flexibility.  This device is designed to handle a large variety of 
memory and I/O devices with little or no added glue logic.  To support this flexibility, there's a 
great deal of programmbility, and thus a great deal of programming necessary to set up the I/O 
system for wait states, bus protocol, etc.  The system ROM programs these critical bits only on 
power up, then invokes a lockdown bit which forces them into a fixed state until the next 
powerdown, insurance against errant or malicious programs when running unprotected OSs.

3.1 The JTAG Test Port

As in all Acutiator chips, a test port for the IEEE P1149.1 boundary scan protocol is 
defined.  While such a port isn't vital to the operation of the device, we're convinced that board-
wide JTAG support will be useful for both Chip and System testing.  The pin requirements are:

Signal(s)                                   Count
Clock 1
Mode Select 1
Data 2
Reset 1

TOTAL 5

The actual test register map will be defined based on the chip implementation, it doesn't 
belong in this architecture specification.  However, we do expect any implementation will at the 
least support the normal boundary scan functions.
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3.2 The AMI Bus Interface

The full AMI bus goes to the Motherboard Control device.  This allows the device to do 
full 32-bit decoding of the addresses in order to directly drive all of its various I/O supports.  
Additionally, this interface allows it to support a number of full 32-bit configuration and control 
registers.  The full 32-bit data bus also allows it to manage data byte funneling for the 8-bit I/O 
bus it supports.  The initial pin count estimate for this section is:

Signal(s)                                   Count
Clocks       3
Address/Data Bus     32
System Bus Control     11

 TOTAL     38

There really aren't many options in this section.  In theory, an advanced version of the 
device could contain some intelligent DMA for I/O management.  Obviously, any extensions to 
the System Bus protocol must go here, which might include additional support for alternate host 
processor buses.  Interrupt synchronization could also go here if pins were available, but its very 
simple to support extenally.

System Bus Signals

BCLK Main bus clock, 25MHz-50MHz.
DCLK Double-speed clock, 50MHz-100MHz
Ø AMI bus phase clock.
AD31-AD0 Main multiplexed address/data bus, synchronously multiplexed based on the 

BCLK and Ø.
MS10-MS0 Multiplexed master/slave control signals.

3.3 The Reset Manager

As in most Amiga systems, there are various aspects of system reset to consider in an 
Acutiator system.  The Motherboard Controller is responsible for managing reset.  On powerup, 
it  monitors a power stability input, and waits with the full and I/O reset lines asserted until this 
signal indicated power stability.  Once power is stable, the controller initiates the full-system 
reset condition.  The full-system  reset condition causes the controller to assert its full-reset 
output for the standard Amiga reset count.  When not driving the full reset line, the controller 
monitors it for other motherboard-generated full resets, if any are possible.  The controller also 
monitors the keyboard clock, to detect a full-system reset initiated externally (assuming keyboard 
resets haven't been disabled via the System Control register), and it looks at the reset output of 
the host CPU to detect processor-generated resets.  Finally, it provides a reset register that 
emulates keyboard reset, to allowing any bus master to generated the full-system reset in 
software.  The pins used:
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Signal(s)                                  Count
Power Stable     1
Main Reset     1
Keyboard Clock     1
CPU Reset     1

TOTAL     4

All registers are reset on power-up, including a register bit that's only reset on power up, 
allowing detection of the power-up state.  Some registers also reset on a keyboard (full-system) 
or CPU-generated (I/O) reset.  As with all other Motherboard Control registers, the reset control 
is only available to a bus masters accessing in Supervisor/Data mode,  Other levels of security are 
are defined by the Motherboard Controller that may lock out reset even in this access mode.

Reset Signals

PWRGD Power stable, or good, driven in by a voltage sensor.
PRST* This is the main full-system reset line.  This is driven out on a power up or 

keyboard reset, and may be driven in by another device issuing a full system 
reset.  CRST* is ignored when PRST* is asserted.

CRST* This is the CPU reset, driven in by the CPU to effect an I/O reset.
KCLK* Keyboard clock, a long low generates a full system reset.

3.4 The Primary Bus Arbiter

The Motherboard Controller manages the arbitration of the Host bus, which was called 
primary arbitration in the context of the A3000 Fat Buster Chip.  A pin-count estimate for this 
subsection follows: 

Signal(s)                                  Count
Host Processor     3
Device Channels     8

TOTAL   11

Bus Arbitration Signals

BR0*-BR5* Bus request inputs.  BR0 is dedicated to the host slot, BR1* to the coprocessor 
slot, all others are for generic AMI bus slots/devices.

BG2*-BG0* Bus grant outputs.  The code on this group determines which master gets the 
bus.  The group reads 7 for no grant.

BB* The common MC68040-protocol bus busy strobe for most bus masters.

Control registers determine the exact behavior of the BR*/BG* protocols.  The default 
behavior follows MC68040 protocols, where the requesting master will worry about snooping 
bus activity and asserting BB*.  Alternately, the BR* line can act as a continuous request, as in 
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the DSP 3210 conventions, with the bus controller snooping and driving BB* appropriately.  
Several bus parking options are supported to determine re-arbitration behavior.

3.5 The I/O Subsystem

The Motherboard Controller provides a variety of I/O addressing and data bridging 
functions for 8-bit peripherals based on various bus protocols, which includes the 6800/6502 bus 
of the standard Amiga CIA chips, and both Motorola and Intel I/O conventions.  It provides a 
number of generic chip selects which may be set up for operation in a number of different 
memory locations.  It provides interrupt vector management for a number of prioritized, vectored 
interrupts.  It manages an implementation of the PCMCIA 2.0 credit-card bus. Finally, it 
implements the programmable SSPB serial bus, which allows access to small, low cost I2C, 
InterMetal, and similar serial bus hardware. 

3.5.1 The 8-Bit Peripheral Bus

In order to support the standard Amiga 8520 CIA chips, as well as any other 8-bit 
devices, the Motherboard Controller implements an 8-bit peripheral bus with flexible types of 
data funneling to and from the main 32-bit bus.  Based on the settings of the individual I/O select 
registers, a peripheral can be located on this bus.  The basic peripheral bus pin requirements are:

Signal(s)                                 Count
Bus basis clock    1
Control    6
Address Bus    8
Data Bus    8

TOTAL  23

Peripheral Bus Signals

C28M Basis clock for 6800/6502 peripheral timings.  
E 6800/6502 Clock
PRW Read/Write Strobe or Read Enable, depending on “Motorola” vs. “Intel” bus 

mode settings for the particular I/O channel.
PDS* Data Strobe or Write Enable, depending on “Motorola” vs. “Intel” bus mode 

settings for the particular I/O channel.
PDTACK* Asynchronous Data Transfer Acknowledge.  Some devices return PDTACK*, 

some are clocked, depending the mode for each channel.
PDL*, PDH* Byte selects for “mux16” modes.  These allow support of a slow 16-bit bus as 

a multiplexed 8-bit bus.  Among other things, this is used for IDE and 
PCMCIA.

PA7-PA0 Address Bus
PD7-PD0 Data Bus
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          Control registers manage many aspects of I/O bus operation.  Access conventions 
following 6800/6502 protocol (E clock synchronized), Motorola protocol (R/W and Data Strobe 
selection), or Intel protocol (Read Enable/Write Enable selection), all with programmable wait 
states or PDTACK* monitoring can be selected.  Various data funneling modes, include a special 
“mux16” mode, are supported to correctly link the peripheral to the System bus master.

3.5.2 The I/O Select Manager

There are a considerable number of I/O chip selects to generate.  To minimize pin 
requirements, the I/O selects are encoded, to be decoded by an external decoder.  When PCS4 is 
high, the selected unit is generally a motherboard resource, when low, a resource expected on 
some general purpose AMI bus module.

Signal(s)                                 Count
Select Code 5

TOTAL 5

Peripheral Chip Selects

PCS4-PCS0 These are the peripheral select lines, which feed an external demultiplexer.  
PCS4 selects between slots and motherboard, PCS3 between memory and I/O 
for slot access.  The encodings are as follows:

PCS4    PCS3   PCS2    PCS1    PCS0         Signal
   0    0    0    0    0 AUX0*

0    0    0    0    1 AUX1*
0    0    0    1    0 AUX2*
0    0    0    1    1 AUX3*
0    1    0    0    0 MEM0*
0    1    0    0    1 MEM1*
0    1    0    1    0 MEM2*
0    1    0    1    1 MEM3*
1    0    0    0    0 CIA0*
1    0    0    0    1 CIA1*
1    0    0    1    0 CIA2*
1    0    0    1    1 AUX4*
1    0    1    0    0 SCSI*
1    0    1    0    1 NET*
1    1    0    0    0 PCMCIA Memory
1    1    0    0    1 PCMCIA Attribute
1    1    0    1    0 PCMCIA Register
1    1    1    1    1 NOP

Most of the chip selects are simply mapped as shown in the memory map.  When located 
on the peripheral bus, all mapping is funneled bidirectionally from 8-bit to 32-bit, as set up in the 
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I/O control regiter, for the programmable select.  For the CIA, things are a bit different. CIA0 is 
mapped on the 8-bit bus, but logically appear as if it were on a 16-bit bus attached to data lines 
D15-D8.  CIA1 is mapped on the 8-bit bus, but logically appears as if it were on a 16-bit bus 
attached to data lines D7-D0.  The location and addressing of CIA2 is really just convention, 
there's nothing special about that I/O channel except that it powers up set to 6502 mode.  

PCMCIA resources are addressed via the system address and a latch control, but run data 
transactions over the data bus.  The PCMCIA chip selects are gated and buffered with other I/O 
bus signals to create the proper PCMCIA interface.

3.5.3 The Interrupt Vector Manager

One of the main slowdowns left in the current Amiga system architecture is the interrupt 
mechanism.  Our current system, except for Zorro III quick interrupts, shares two priorities of 
interrupt via software interrupt arbitration.  Hardware arbitration of vectored interrupts, when 
possible, is far more desirable.  To facilitate this end, the Motherboard Controller provides a 
number of interrupt inputs attached to an interrupt vector manager.  A variety of separate 
interrupt inputs, corresponding to the various I/O devices managed here, are available.  Each of 
the interrupt channels is governed by an interrupt control register.  This register allows the 
interrupt to cause either INT2* or INT6* to directly follow the state of the input, or to follow edge 
transitions on an input.  The logic level of the interrupt is also programmable in the general case. 
Each register maintains a bit which reflects the asserted state of the input, which is cleared on 
read.  The interrupts for the standard CIA chips are fixed at active low, level sensitive, and 
directly attached to INT2* for CIA0, INT6* for CIA1.  Therefore, these interrupts are not 
managed here, though the I/O selects for these devices are.

Each register contains an 8-bit interrupt vector field.  A non-zero vector causes the 
interrupt manager to respond to interrupt acknowledge cycles for the specified interrupt level.  
The expansion bus can get into this vector arbitration by asserting IER* to request interrupt 
vector response permission, which is granted via IEG*.  Pending interrupt service actions are 
signalled by IPEND*.  Monitoring of this line allows the bus arbiter to reschedule the host 
processor prematurely in the event of pending interrupts going unserviced for too long.  A pin 
count for this subsystem yields:

Signal(s)                                   Count
Interrupt pending     1
Interrupt vector     6
Interrupt output   2
Expansion vector     2

TOTAL   11

These is one enhancement to consider.  Add a cycle threshold register, a register that sets 
the amount of time that a pending CPU interrupt can wait unserviced before the device attempts 
to rescuedule the default bus master. 
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Interrupt Management Signals

VEC5*-VEC 0*      Interrupt vector inputs.  These all power up defaulting to level sensitive, active 
low, and disabled.  

INT 2* Low-priority shared system interrupt.
INT 6* High-priority shared system interrupt.
IPEND* Interrupt pending to Host processor.
IER* Expansion interrupt vector request.
IEG* Expansion interrupt vector acknowledge.

3.5.4 The SSPB Bus

A variety of small pin-count, low cost, low speed peripheral devices exist on addressable 
serial buses like the Phillips I2C bus, the  ITT InterMetal bus, and lately the DEC/ACE 
Access.Bus.  In order to take advantage of these in an Acutiator system,  the Motherboard 
Controller implements a three wire version of the Amiga Synchronous Serial Peripheral Bus 
(SSPB).  SSPB defines a simple and flexible clocked serial shift bus that can be programmed to 
support a variety of interrupt driven and programmed serial protocols.  It's up to the system 
specification and system software to determine exactly which serial protocols will be supported 
(eg, it's not always possible to support multiple simultaneous protocols on the same SSPB bus; 
that's a limitation of the devices addressed, not the SSPB implementation).

Signal(s)                                Count
SSPB Bus    3

TOTAL    3

SSPB Bus Signals

CNT SSPB clock, which can be programmed directly via PIO, or by the  SSPB 
clock generator. 

SP SSPB data, shifted by the SSPB clock generator or PIO.
SAD SSPB Address strobe.  This is an optional address cycle strobe.

3.5.5 The Memory Card Interface

Low-end Amiga systems, beginning with the Amiga 600, have provided a standard 
PCMCIA 2.0 memory card interface.  This is actually quite a bit more than a simple memory 
card interface, in that it can support a variety of I/O devices as well.  As an industry standard 
memory card interface alone, it provides a useful interchange format between Amigas and other 
systems, auch as IBM PC compatible laptops and eventually handheld “personal data assistants”.  
Presumably, Amiga games may also find their way onto such cards, and this standard looks to be 
a reasonable way to go for compact standard low-performance I/O devices. 

The I/O bus itself provides a good number of PCMCIA signals when driven in the 
PCMCIA mapped regions.  The signal relationships are as follows:
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         PCMCIA Signal I/O Bus Signal
CE1* PDH* & any chip select
CE2* PDL* & any chip select 
OE* R/W (Intel Mode, Memory cycle)
WE* DS* (Intel Mode, Memory cycle)
IORD* R/W (Intel Mode, I/O REG* cycle)
IOWR* DS* (Intel Mode, I/O REG* cycle)
PDTACK* WAIT*
REG* PCS5-PCS0 = $18 (I/O) or $19(Attribute)

All I/O bus signals are buffered out to the PCMCIA bus.  Some extra signals are needed 
for PCMCIA support, both for the PCMCIA bus itself and for the external buffers used to drive 
it.  Additional signals are:

Signal(s)                                Count
Buffer Controls 2
Bus Controls 7

TOTAL 9

Buffer Controls

CALE* Address latch for PCMCIA addresses not provided via the I/O bus.
CDOE* Enable for PCMCIA data.

Bus Controls

CRDYBSY* Ready/busy in memory mode, interrupt request in I/O mode.
CRESET Reset output.
CWP* Write protect, used for 8/16 bit indicator in I/O mode.
CCD Card detect line.  Externally, CCD2 and CCD1 are ORed together to make this 

input.
CBVD2-CBVD1  Battery voltage detect lines.  In I/O mode, BVD1 is the card status changed 

indicator line.
CRFSH Refresh indicator, not fully explained in PCMCIA specification August 1991.

3.6 The Coprocessor Interface

Aside from managing the bus arbitration lines for support of DSP and expansion 
coprocessors, the Motherboard Controller supports a coprocessor control mechanism.  While I/O 
oriented bus masters, such as SCSI or Network processors, don't require coprocessor control, 
alternate full function processors such as DSPs or other CPUs need some support for hardware 
semaphores and often, booting control.  This mechanism provides lines, programmable via 
registers, that permit the host processor or other bus master to reset, send interrupts to, or 
otherwise communicate with such satellite processors.  To save on pin counts, these controls are 
serialized between the System Controller and the particular Coprocessor subsystem.  Internally, 
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each coprocessor channel appears to have an 8-bit input and an 8-bit output register, with various 
options on the behavior of some of the I/O bits.  Each I/O register is serialized based on a transfer 
clock and a load strobe, which hook to very low cost TTL shift registers.  The signals required 
are as follows:

Signal(s)                                  Count
Coprocessor Boot     1
Register Clock     1
Register Load     1
Control Channel 1-3     6

TOTAL     9

A final function here is the CBOOT* line.  This function permits the coprocessor device 
(DMA channel 1 on the AMI bus) to fully take over, at boot time, as bus master, without the 
hacks necessary in earlier Amiga systems.  When CBOOT* is asserted, the bus arbiter treats the 
coprocessor device as if it were the Host processor, assuming interrupts are targeted there (via 
external logic).  If asserted prior to system reset, it assumes that coprocessor device contains an 
expansion ROM (on the MEM1* select) which is automatically made the overlay ROM for boot.  
If asserted immediately after reset, the coprocessor device will boot from on-board ROM, but it's 
certain to get the first bus cycles as long as it has a bus request pending at reset time (not all 
motherboard designs guarantee that the AMI bus has access to on-board or Host bus ROM!).  
This mechanism also allows an Acutiator system to easily be built with the host processor 
optional .

Coprocessor Interface Signals

CBOOT* Indicates Coprocessor (DMA channel 1)  is the primary boot device.
CRC Coprocessor register clock.
CLD* Coprocessor register load strobe.
CRD3-CRD1 Serialized input register for DMA channel 1-3.
CWR3-CWR1      Serialized output register for DMA channel 1-3.

3.7 Motherboard Controller Summary

Past Amiga motherboard controllers have been designed specifically for one particular 
system at a time.  This works well in that one specific system, but overall, it's a short-sighted 
approach.  That which directly supports one given system may be overkill or insufficient for 
another system, even one that's very similar on the surface of things.  For example, the Amiga 
3000 system chips don't support the addition of a single extra I/O chip.  Nor does it directly 
support the 68020 bus, though it very easily could have had that been a design goal.

This specification incorporates the main features of an avanced motherboard system 
controller, all in a single gate array.  Features presented here are designed to create a flexible 
controller than can be used in several future generations of mid-range to high-end Amigas, rather 
than just one specific machine.  This part can support anything from a very low cost closed pizza 
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box system up to a full blown tower system with SCSI, Ethernet, DSP, and various other kinds of 
I/O support.  In the long run, this approach should save considerable engineering costs and 
improve time-to-market.  A summary of the required signal pins is:

Signal Group                          Count
JTAG Test Port 5
AMI Bus Interface 48
Reset Manager 4
Primary Bus Arbiter 11
I/O Subsystem 51
Coprocessor Interface 9

GRAND TOTAL 128

That's the basic Motherboard Controller architecture specification. A suggested chip 
implementation follows, including register map and bit definitions. 

3.8 The AMOS Chip Implementation

The Advanced MOtherboad System controller, AMOS, is a suggested single chip 
implementation of the Acutiator Motherboard Control system.  Due to the reasonably large AMI 
bus interface and the communications between various function units, a single chip 
implementation is preferred, but not required. This will be a 0.8um CMOS gate array of roughly 
20,000 gates, housed in a 160 pin PQFP package.  The 128 pins required by the specified 
Motherboard Controller function, plus five VDD and seven VSS (power pins based on traditional 
Commodore gate array conventions), will add up to the recommended 140 pins, leaving twenty 
no-connects for the moment.  Those spare pins will probably be used for additional power and 
ground should no other use be found for them in the final design.

The actual AMOS design, while new in many areas, is the logical successor of parts of 
the Amiga 3000's Gary, RAMSEY, and Buster gate arrays.  Based on the latest design 
methodologies, it doesn't make much sense to adapt actual logic from any of these parts, since 
most of the Acutiator chips will rely heavyily on logic synthesis, and must support clock speeds 
considerably beyond anything considered in the Amiga 3000 architecture. A block diagram of the 
AMOS chip is given in Figure 3-1.

3.9 MC68020/MC68030 Bus Support

The Acutiator bus attempts to support host processors that have bus access behavior 
similar to that of the MC68020/MC68040.  This is reall just a matter of the specification of some 
small protocol variances to the MC68040 conventions.  No other Acutiator chips will be affected 
by these protocols.  The protocl changes really just pertain to the behavior of the Acutiator 
system at boot-up time.  We have to make sure that the host processor gets enough time on the 
system bus to start the whole system going.
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After reset, the System Controller doesn't know if the Local bus device (AMI slot 0) or the 
Coprocessor slot device (AMI slot 1) is the default bus master (the system only requires one of 
these to start up).  Unless the coprocessor boot pin CBOOT* is asserted, the system controller 
will initially assert BG2..BG0 = 0 (host processor grant) for 64 system clocks, whether or not it 
receives a BR0*.  If no bus cycle starts by the end of that count, the BG code changes to 1, for the 
coprocessor device for a count of 64 systems clocks.  A similar timeout may occur, with the grant 
then switching back to the host slot.  This activity continues forever until one of the devices takes 
the bus.  At that point, the responding device is internally latched as the default bus master.

The bus will remain parked at the responding (and thus default) bus master until the first 
bus request made by an alternate master.  Presumably prior to any other bus requests, the bus 
park option will be set.  There are two options: park last and park host. In the power-up default 

Figure 3-1: AMOS Chip Block Diagram
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mode, park last, the bus will remain parked at the master last granted the bus until another request 
comes in.  In park host mode, the bus mastership will automatically return to the system host 
whenever no other master is making a request.  This takes place with or without a request from 
the host.

Previously the System Controller was responsible for responding to either MC68030 or 
MC68040 protocol interrupt acknowledge cycles.  This is no longer the case, the AMI bus 
supports only the MC68040 protocol, where the T1-T0 code indicates interrupt acknowledge, 

Figure 3-2: AMOS Register Map
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while the interrupt level is indicated on M2-M0.  It's up to the CPU/RAM controller block to 
provide AMI bus compatible interrupt acknowledges and to provide any autovectoring signal that 
might be needed by the host processor.

3.10 RISC/Alternate Processor Bus Support

The AMI bus and System Controller, while generally designed to mesh nicely with 
MC68040 processor protocols, is designed to be reasonably processor independent.  This is 
designed to allow easy support of coprocessors like the DSP3210, as well as future MC68060 or 
RISC host CPUs, on the bus.  The basic protocols are easy to implement with m a handful of 
buffers and PALs from most modern CPU native bus interfaces.  Registers are provided to taylor 
each bus master to the bus when its master.  Some masters may support the full speed AMI bus 
with burst, others may only run single cycles.

The System Controller and AMI bus also support 64-bit processors.  The 64-bit DRAM 
bus can be read as 64-bits wide, rather than a pipelined 32-bits wide.  The AMI bus runs 
automatic double-32-bit transactions or octal-32-bit bursts in response to a 64-bit transaction 
request.  See Chapter 7,  “The AMI Bus”, for more information on this pseudo-64-bit protocol 
and other AMI bus issues.

3.11 Register Map

Of the Acutitor system chips, the System Controller has by far the most registers.  These 
are necessary to support the memory system, the flexible I/O mapping mechanism, the interrupt 
vectoring feature, and other control functions.  The first of the registers is the standard 
ID/Version register.  The initial AMOS chips read an ASCII 'A' 'M' in the top word of that 
register (the AMOS ID code), and a $0000 in the bottom half of that register, indicating version 
and revision of zero.  The AMOS Version Register is illustrated in Figure 3-3. Note that all 
AMOS registers are visible only in Supervisor mode, and only for Data accesses.  Access to the 
AMOS registers should never be cached or bursted and always serialized.  

3.11.1 System Control

The second AMOS register is System Control, illustrated in Figure 3-4.  Its purpose is 
control of the various miscellaneous motherboard functions that don't logically fall into other 
subsystem groups.  It  contains eleven active bits.  

0 Power-up Lockout HL
This bit is set to zero only on power-up, and may be set to one by the processor.  When 
set to one, it locks the sensitive hardware configuration registers in their current state.  

Figure 3-3: The AMOS ID/Version Register
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Figure 3-4: System Control Register

Bits/fields affected by this are indicted by “HL”.  This bit also allows the OS to 
differentiate between cold and warm boots. 

1 Keyboard Lockout SL
This bit controls keyboard reset.  In its power-up setting of zero, the keyboard reset 
sequence will reset the system.  If set to one by the processor, keyboard resets are 
ignored.

2 Soft Reset SL
This bit always reads as zero, but causes a simulated keyboard reset if written one.  This 
allows the CPU to send a full-system reset to the system.  A CPU-generated reset isn't the 
same, that's only an I/O reset.

 4:3 Bus Timeout
This is the Bus Timeout field.  This register resets to zero, indicating that all cycles 
unterminated after approximately 8ms will be automatically given a normal termination.  
Writing a one here subquently causes unterminated cycles to be given an error 
acknowledge after approximately 250ms.  Setting Bus Timeout to two causes all timeouts 
to be disabled, while a value of three is undefined.

5 Park Mode HL
This bit powers up zero, indicating that the host processor requests the bus, and thus it 
can remain parked at the last active master.  If written one, the primary bus arbiter will 
assume the host doesn't actively request the bus, and so an unrequested bus returns to the 
host channel automatically.

 10:7   Access Lock
This register is a key to lock various fields against access by errant programs.  The 
register resets to the unlocked state.  A key written to it activates the soft lock, the 
inverted key written deactivates the soft lock.  Affected fields are indicated by “SL”.

23:16   Retry Wait SL
When a bus request from a DMA channel with Retry Enable set comes in, the controller 
will run a relinquish and retry cycle if the bus cycle doesn't complete within the number 
of clocks determined by the count in this field.  No retry is attempted for channels with 
Retry Enable cleared or if this is set to zero.

28:30   Host Master Interrupt Priority SL
The host processor is generally fixed at a DMA priority of zero, other bus masters take on 
priority values relative to this.  However, when an interrupt is taken, the master needs its 
priority bumped up; it gets bumped up to the value stored here. 

31 Host Master Interrupt Reset
This bit is set to one when the system controller bumps host DMA priority up in response 
to an interrupt.  A zero written here sets the priority back to zero.
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3.11.2 System Time Counter

This register pair is a 64-bit free running counter, starting at offset $0100.  It counts 
BCLK cycles.  To avoid rollover confusion, an access of the high-order register causes the count 
to freeze until the low-order register is accessed.  A write to this register resets it to zero, which 
is also the value after a power-up reset.

3.11.3 SSPB Registers

The next two registers manage the Synchronous Serial Peripheral Bus, or SSPB.  This is 
a flexible two/three-wire serial interface, designed to hook up to low cost serial bus I/O devices, 
such as those on the Philips I2C bus (two-wire) or ITT InterMetal bus (three-wire) protocols.  
It's expected that this will also support the emerging Access.Bus standard from DEC.  The 
register at offset $010C is the SSPB data register, which transfers an eleven-bit serial stream in 
and out of AMOS onto the open-drain SP pin.  The register at $0108 is the SSPB control 
register, which sets up clock and data options.  There's an external data transition before the first 
clock, and one after the last clock.  The SSPB Control bit field assignments are:

7:0 Clock Speed
The SSPB automatic clock period is determined by the value written to the Clock Speed 
byte.  The cycle time of CNT is given by (Clock Speed * 160ns), for values  from 1 to 
255.  The value of Clock Speed is preserved over multiple SSPB data cycles.

8 Raw SP*
 This bit provides direct access to the SP line.  A high written to Raw SP* will cause a 

low on the SP line when the SSPB mechanism is not in a clocked transfer.  A read of 
Raw SP* will return inverted the current state of the SP line.  This allows the active 
programming of the SP line, to create unusual soft serial protocols.

9 Raw CNT*
 This bit provides direct access to the CNT line.  A high written to Raw CNT* will cause 

a low on the CNT line when the SSPB mechanism is not in a clocked transfer.  A read of 
Raw CNT* will return inverted the current state of the CNT line.  This allows the active 
programming of the CNT line.

10 Interrupt Enable
The Interrupt Enable bit is written low to disable interrupts, high to cause an INT2* 
interrupt to be generated by AMOS when a byte has been transferred over the SSPB bus.  

Figure 3-5: SSPB Registers
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Interrupts are generally used by all clocked SSPB protocols, and they're normally 
autovectored; there doesn't currently seem to be any need for vectoring, though this 
remains an open issue until the Access.Bus specification is obtained.

11 Transfer Complete
The Transfer Complete  bit goes high to indicate that a successful transfer has completed; 
it is cleared on read, a no-op on write. 

12 Serial Mode
This bit resets clear, indicating that a normal two or three wire cycle will be generated the 
next time data is written to the SSPB data register.  Setting this bit causes the SAD line to 
be driven to indicate a 3-wire address cycle.  It will automatically clear after the cycle is 
run.

3.11.4 I/O Control

Starting at offset $0200, the AMOS chip has a number of registers for the management of 
its I/O resources.  There is one I/O control register for each I/O select, except for CIA1 and 
CIA0, which are hard-wired for their particular functions.  Simple I/O devices can be driven 
directly by the I/O control registers.  More complex timing can be achieved by linking an I/O 
control register to an I/O timing register.

0 Bus Location HL
This defines the bus location of the given I/O device.  A devices is on the AMI bus when 
this register is zero, on the I/O bus when its one.  All AMI bus devices are responsible for 
heir own bus timing -- nothing else in the I/O control system affects an AMI bus device.  
DI/O bus devices have a variety of options.

1 Data Size HL
This defines the data size of the given I/O device.  Technically, the I/O bus only supports 
8-bit devices, since it only has an 8-bit data bus.  However, when this bit is one, an 
external buffer can multiplex 16-bit data onto the 8-bit bus. 

3:2 Address Increment HL
This register specifies the I/O bus address increment for each I/O bus cycle.  This allows 
various I/O schemes when coupled with other I/O options. 

6:4 Cycle Mode HL
This register determines the type of cycle run for the I/O device.   Basic bus protocols 
include 6800 (synchronization with ECLK), Motorola-style, and Intel style access modes.  
Finally, a mode can be asynchronous (determined by a device's response to the 
PDTACK* line) or synchronous (with termination determined by a I/O Timer Register).

Figure 3-6: I/O Control Register
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Code                Function
0 No I/O for this channel
1 6800-style cycle
2 Mototola-style asynchronous cycle
3 Intel-style asynchronous cycle
4 Motorola-style synchronous cycle
5 Intel-style synchronous cycle
6 Motorola-style modified asynchronous cycle
7 Intel-style modified asynchronous cycle

10:8 Data Funneling HL
This field determines how the AMOS chip will pass I/O bus data back to the main CPU.  
Data can be passed back on D7..D0 or on D31..D24.  Alternately, bytes can be packed into 
words, longwords, or bursts, making the 8-bit device appear to be a 32-bit device (several 
8-bit cycles run together to make up one 32-bit cycle, of course).  The CIA1 and CIA0 
devices run strange mappings that let them be upward compatible with the original A1000 
memory mapping of these same devices.  This equates PA0 with A9 of the AMI bus, and 
does byte to word mapping, in one case mapping the byte to the upper 8-bits of the word 
rather than the lower.  The so-called PD15-PD8 refrers to pseudo-16-bit cycles on the 8-bit 
bus.

Code               Function
0 Run PD7..PD0 to D7..D0, no packing.
1 Run PD7..PD0 to D31..D24, no packing.
2 Pack bytes into longwords.
3 Reserved
4 Run PD15-PD0 to D15-D0, no packing.
5 Run PD15-PD0 to D31-D16, no packing.
6 Pack words into longwords.
7 Pack words into longwords, byte-reversed.

11 Enable Burst HL
Burst transfer is enabled for this channel.

15:12 Timer Register HL
This indicates the Timing Register number that should be used for timed or modified 
asynchronous cycles.  A modified asynchronous cycle is a more flexible form of the 
asynchronous cycle, where the timing register's counters modify how the PDTACK* 
signal is to be treated.

3.11.5 I/O Timer

The I/O Timers, based at offset $0300. are registers designed to govern timing for a 
complex I/O function.  The timing operation can be a purely synchronous cycle, timed with 
flexible control over the I/O chip select, R/W or RE*, and DS* or WE* strobes.  Alternately, the 
same kind of control over the strobes can be achieved for an asynchronous cycle, along with a 
modification to the PDTACK* sample to data valid delay.  And the timing can be based on either 
BCLK or C28M.
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1 Clock Source HL
This bit selects between the I/O clock, C28M, and the AMI bus clock, BCLK, for use as 
the timer's basis clock.  The use of BCLK should allow the peripheral to run 
synchronously to the AMI bus, while C28M will always require synchronization.  On the 
other hand, C28M is a fixed value, whereas BCLK will be different depending on system 
clock speeds.

12:8 Access Count HL
For synchronous cycles, this five bit field determines the number of clock cycles used for 
access, where the count is (Cycle Timing + 2).  For asynchronous cycles, it determines 
the cycle count between PDTACK* received and data latched/cycle ended.

19:16  CS Delay HL
This field sets the count between peripheral address valid and CS/cycle start for the given 
I/O device.

23:20  DS Delay HL
This field sets the count between peripheral address valid and Data (Motorola mode) or 
Read-Write (Intel mode) strobe valid for the given I/O device.

27:24   Recovery HL
This field sets a minimum spacing between consecutive cycles one same device.

3.11.6 Interrupt Control

Starting at offset $0400, the AMOS chip has a number of registers for the management of 
interrupts.  The register format is:

Figure 3-8: I/O Timing Effects

Figure 3-7: I/O Timer Register
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7:0 Vector
This eight bit field specifies an interrupt vector for the device.  On power-up, this is 
initialized to zero, which indicates an autovector is used instead.  Any non-zero value will 
result in AMOS performing a vector acknowledge cycle for the device if it wins interrupt 
arbitration.

9:8 Destination
This register sets the interrupt level to be used.  It resets to zero, indicating that the 
channel is disabled, no interrupts will be generated.  A value of one will cause INT2* to 
be generated in response to an interrupt channel input, a value of two will cause INT6*.  
A value of three is reserved.

10 Type HL
This bit powers up zero, indicating level-sensitive interrupts are expected.  A one written 
here specifies an edge-sensitive interrupt expected.

11 Polarity HL
This bit powers up zero, indicating active low/low-going interrupts are expected at the 
input.  A one written here will cause active high/high-going interrupts to be caught 
instead.

12 Received
This register reads zero if no interrupt has been detected, one if one has.  It is 
automatically cleared on read.

31:28   Priority
This register specifies the relative priority of the interrupt.  Expansion bus quick 
interrupts are fixed relative to motherboard resources at a group priority of zero, which is 
also the powerup default value of this register.  A four bit signed value written here will 
set up a different priority.  Interrupts received for the same destination at the same preset 
priotity are managed in a round-robin scheme.

3.11.7 DMA Control

The DMA Control registers, which start at offset $0500, manage the programmable DMA 
channels. The channels available are numbered 1-5 (channel 0 is actually the host processor's 
channel). All are basically general purpose channels, though Coprocessor Control is only 
supported on channels 1-3.

0    Request Mode HL
This field, reset to zero on power-up, indicates the type of bus request generated by the 
potential master.  If zero, the device supports MC68040 style BR*/BG*/BB* protocol, 
including arbitration snoop.  If one, the device supports a simple BR*/BG* protocol 
similar to that of the DSP3210, with the AMOS chip responsible for arbitration snoop.

Figure 3-9: Interrupt Control Register
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1 Retry Enable
This bit conrols the system's relinquish and retry mechanism with respect to the given 
channel.  In the reset condition of zero, no retry is used for the channel, while when set to 
one, the system retry wait regster is used to time out a retry when the channel's bus 
request is asserted.

2 Burst Enable SL
 This register indicates the burst capability of the potential bus master.  When set to the 

power-up value of zero, burst is not supported.  When set to one, burst is supported.
  10:8  Modifier Type

When set non-zero, this register supplies a value to be driven by the system controller for 
the M2-M0 lines, and also forces T1-T0 to be driven to “normal access” when this device 
is master.  If zero, these lines are tri-state during the device's mastership.

16 Error Flag
This is set when a bus error is generated during the tenure of the specified bus master.  It 
is cleared on reset or when rewritten.

19:17  Error Code
This is the AMI bus error code that was present when an error caused the Error Flag bit to 
be set.  In the case of multiple bus errors, the last error is stored here.

20 Access Flag
This is set when the potential master actually run a bus cycle.  It is cleared on reset or 
when rewritten.

31:28  Priority
This register specifies the relative priority of the DMA channel  A four bit signed value 
written here will set up a priority, which defsults to zero. Requests received at the same 
preset priority are granted in a round-robin (eg, fair) scheme.

3.11.8 Coprocessor Control

The Coprocessor Control registers, based at $0600, are designed to allow the host 
processor to easily manage simple control of alternate processors.  This isn't generally necessary 
for devices that are of the “DMA controller” nature (eg, SCSI, Ethernet, etc.), but it is generally 
necessary for devices that are of the “Coprocessor” nature (eg, DSP, CPU farm, etc.).  The bits 
are as follows:

Figure 3-10: DMA Control Register

Figure 3-11: Coprocessor Control Register
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0:1    Input Options
This field specifies some modified behavior for the input data register.  When set to zero. as on 
powerup, the input lines are simply port lines.  When bit 0 is set, bit 0 of the input register causes 
an interrupt to be generated, based on the indicated vector register.  When bit 1 is set, bit 1 of the 
input register acts as a negative edge detector rather than an indicator of the input level.  

7:4 Vector Register
This register specifies an interrupt control register to use for generating any interrupt called for 
by the Input Mode setting.  The trigger condition is set by the Input Mode setting, while the 
vector, level, and priority are based on this selected register number.

9:8 Output Mode
This field specified a modification to the output data register.  If bit 0 is set, bit 0 of the output 
register acts as a negative-going strobe rather than a fixed port line.  If bit 1 is set, bit 1 of the 
output register acts as a positive-going strobe rather than a fixed port line.

23:16  Input Data
This is the input data register.  It generally reflects the status of the input data port, though its 
behavior can be somewhat modified by the Input Mode setting.

31:24  Output Data
This is the output data register.  This is generally written to directly drive the output port lines, 
though its behavior can be modified somewhat by the Output Mode setting.  The values written 
here can be read back at any time.

 
3.12 PCMCIA Registers

The Credit Card registers are mapped according to the standard PCMCIAconventions.  Registers 
are provided to locate PCMCIA address and I/O in the system memory map.  These mappings will be 
provided in a future release of this specification.

3.13 Memory Mapping

The AMOS chip does lots of memory mapping.   The chip itself is located at a base of 
$00DE0000.  The various resources it maps are:

Signal                                                                         Range                    
CIA0* $00BF0000 $00BFFFFF
CIA1* $00BF0000 $00BFFFFF
CIA2* $00BE0000 $00BFFFFF
SCSI* $00DD0000 $00DDFFFF
NET* $00D90000 $00D9FFFF
AUX0* $00DB0000 $00DBFFFF
AUX1* $00BD0000 $00DDFFFF
AUX2* $00BC0000 $00BCFFFF
AUX3* $00BB0000 $00BBFFFF
AUX4* $00BA0000 $00BAFFFF
MEM0* $04000000 $04FFFFFF
MEM1* $05000000 $05FFFFFF
MEM2* $06000000 $06FFFFFF



Chapter 3: The Motherboard Controller V7.33-22

MEM3* $07000000 $07FFFFFF
PCMCIA Memory TBD
PCMCIA I/O TBD
PCMCIA Attribute TBD
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Chapter 4
The Amiga Chip Controller

The Amiga Chip Controller is the interface between the Acutiator System Bus and the 
particulars of a given implementation of the Amiga Chips and Chip Bus.  This device 
encapsulates the interface logic between any specific Amiga chip set and the rest of the Acutiator 
system.  The particular Chip Controller specified here is designed to be a high performance 
interface between the AMI bus and the AAA Chip Bus, but a similar design could be done for 
any Amiga chip architecture.

Chip RAM access speed has been the one heretofore unsurmountable bottleneck in 
Amiga systems.  The Chip Controller is designed to drastically reduce this bottleneck.  It's very 
possible for this to be done with systems like AA or probably AA+, but AAA makes it especially 
simple.  The Chip Controller contains a flexible data path FIFO, which sits between the AMI and 
RGA/D buses.  This device can match CPU to Chip Bus speeds, write-buffer for zero wait write 
cycles, and lookahead in Chip RAM for more efficient block copies even when the AMI bus 
master isn't running burst cycles.  The Chip Controller can interface to the AAA Chip bus either 
via the standard Andrea-controlled access or it can master the AAA DRAM bus and drive 
memory cycles itself at full CPU speed.

4.1The JTAG Test Port

As in all Acutiator chips, a test port for the IEEE P1149.1 boundary scan protocol is 
defined.  While such a port isn't vital to the operation of the device, we're convinced that board-
wide JTAG support will be useful for both Chip and System testing.  The pin requirements are:

Signal(s)                                  Count
Clock     1
Mode Select     1
Data     2
Reset     1

TOTAL     5

The actual test register map will be defined based on the chip implementation, it doesn't 
belong in this architecture specification.  However, we do expect any implementation will at the 
least support the normal boundary scan functions.

4.2 The AMI Bus Interface

Virtually all of the AMI bus signals go to the Chip Controller, though as a slave-only 
device, no arbitration signals are needed.  It needs full address, data, and control in slave mode 
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during AMI bus to Chip bus conversions.  Additionally, the AMI bus basis clock provides 
synchronization for all AMI bus events and various internal operations.  The initial pin count 
estimate for this subsection is:

Signal(s)                                  Count
Clocks      2
Adresss/Data Bus    32
Master/Slave Bus    11
Additional  Control      1

TOTAL    46

AMI Bus Signals

BCLK AMI bus basis clock.  All AMI bus signal transitions are references to this 
clock.

Ø AMI bus phase clock.  This clock determines the multiplexing of the 
address/data and master/slave signals on the AMI bus.

AD31-AD0 AMI bus address/data signals.
MS10-MS0 AMI bus control signals.
CRST* CPU Reset strobe.

4.3 The Chip Bus Interface

The Amiga Chip Controller device interfaces directly to the AAA system's Andrea chip.  
Most Chip bus related timing comes from the Andrea basis and bus clocks, while all Chip bus 
activity is initiated by activating this control interface.  The list of signals is as follows:

Signal(s)                                 Count
Chip Bus Clocks     2
A/D Bus   32
Chip Bus Controls     6

TOTAL   40

Chip Bus Clocks

MCLK Chip bus basis clock.
BUSCLK Chip bus transaction clock.

A/D Bus

RA/D31-RA/D0 This is the AAA multiplexed address/data bus.  Transfers between the Chjp 
bus and the AMI bus are buffered though the Chip Controller in a variety of 
ways depending on the exact transfer mode and cycle type in question.
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Chip Bus Controls

ALE* Address Latch Enable.   This bidirectional chip bus signal determines when 
Chip bus addresses are latched.

LATCH* Data Latch.  This bidirectional chip bus signal determines when data is latched 
from the chip bus into the Chip Controller device.

AS* This is the Andrea address strobe.  This and the NEED* signal are driven to 
cause a normal Andrea access.

RAM/REG* This strobe is driven by the Chip controller logic to tell Andrea if the current 
cycle is for Andrea registers or for Chip RAM.  Note that some register 
accesses involve 16 to 32 bit bus sizing, and all are burst and cache inhibited.

DUAL/SING* This line determines if the Chip bus is for a dual or single system.  This 
impacts a few of the interface decisions.

ARST* Andrea Reset.  This line resets Andrea under control of the Chip Controller's 
reset register.  This lets any DRAM/VRAM configuration codes can be 
entered before Andrea is reset, and ensures a 10ms reset pulse on powerup.

4.4 The Chip Bus Arbiter

The Chip bus arbiter manages the access of the chip bus by the AMI bus master.  The 
Andrea chip supports two kinds of bus mastership, either Andrea-controller or externally 
controlled.  For Andrea controlled cycles, Andrea is responsible for providing chip bus DRAM 
timing, while the AMI bus master must somehow synch up or down to that cycle.  The Chip 
Controller handles this type of cycle by running data through a FIFO, so a full speed Chip bus 
cycle can be run, even with burst, without intra-cycle synchronization delays.  The Chip 
Controller also supports the externally controller Chip RAM cycle, where is must drive all 
DRAM signals itself.  The advantage of this type cycle is that the DRAM cycle is run 
synchronous to the AMI bus clock rather than the Chip bus clock, so it's more efficient.  The 
required signals for this group are:

Signal(s)                                  Count
Normal Access     2
External Access     2
Holdoff     1

TOTAL     5

Chip Bus Arbiter Signals

NEED* This is asserted by the Chip Controller for normal Chip bus access.  All 
register accesses and Andrea-controller DRAM accesses are activated when 
the Chip Controller asserts NEED* and AS* appropriately.  The Andrea chip 
manages the synchronization of NEED* to the Chip bus clock.

BG* This signal is asserted by Andrea to grant one standard cycle to the Chip 
Controller.  This may be a single or burst cycle, depending on the state of the 
burst request (only used for DRAM access).



Chapter 4: The Amiga Chip Controller V7.04-4

HIGHRQ* This signal is asserted by the Chip Controller for a high priority access to the 
Chip DRAM bus.  In this mode, the controller drives all the DRAM signals.  

HIGHBG* This signal is asserted by Andrea to give the Chip Controller the go-ahead to 
master the Chip DRAM bus.

GOAWAY* This signal is asserted by Andrea to indicate to the Chip Controller that the 
next Chip bus cycle cannot be granted to the AMI bus master.  This can 
optionally cause the Chip Controller to issue a retry termination on the AMI 
bus rather than stall out waiting for Chip bus access.

4.5 The Chip RAM Interface

Timing of the Chip bus is managed by either the Andrea Chip or the Chip Controller, 
depending on the bus access mode granted by Andrea.  Not only does the Chip Controller 
manage DRAM controls for Andrea's “high priority” control mode, but it drives configuration 
codes for the DRAM/VRAM installed, based on some programmable registers.  This interface is 
clever enough to support variable sized memory modules, by shifting the output RAS* controls 
appropriately.  While the AAA timing to Chip RAM is basically fixed, the Chip Controller 
allows the DRAM access to be quite flexible when driven under its control.  To take full 
advantage of this mode, memory timing registers must be programmed based on AMI bus speed 
and the type of DRAM installed.  The Chip RAM Control Signals are:

Signal(s)                                 Count
Address    14
Memory Strobes    26
Control      5

TOTAL    45

Address

MA 9-MA 0 This is the address bus for VRAM/DRAM addressing.  MA8 is only used for 
parts addressed as 4MB devices.  This is always driven by the current Chip 
RAM bus master.

XA3-XA0 This is the bank address bus, providing the selection of one out of eight 
possible banks for VRAM or DRAM.  Note that the XA encoding depends on 
whether the system is dual or single for both DRAM and VRAM access.

Memory Strobes

RAS* This is the global Row Address Strobe.  This is asserted by Andrea when 
mastering the DRAM bus to select the appropriate bank-specific RASN* 
strobe.

BRAS* This is the Row Address Strobe for external blitter cycles.  These are 
generated by Andrea for satellite blitter chips, which are supported by Andrea 
but don't currently exist.
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RAS7*-RAS0* These are the bank-specific Row Address Strobes.  The XA3-XA 0 bus 
determines which of these will be driven for an Andrea-mastered DRAM 
cycle.  When the Chip Controller is mastering the Chip bus, the bank is 
internally determined based on the bus address.  

SE7*-SE0* These are the bank-specific serial port enable strobes.  The XA3-XA0 bus 
determines which of these is driven for a VRAM serial cycle.  The SEEN* line 
determines when the XA bus code is for VRAM cycles.

CAS7*-CAS0* These are the Column Address Strobes.  They're driven by the current Chip 
bus controller.  CAS7*-CAS4* correspond to CASH3*-CASH0*, the strobes 
for low-end systems and even longwords in high-end systems, while CAS3*-
CAS0* correspond to CASL3*-CASL0*, the strobes for odd longwords in 
high-end systems.

Control

WE* This is the write enable strobe.  This is driven by the current Chip bus master.
RFSH This signal is driven by Andrea to indicate that a refresh cycle is taking place.  
SEEN* This line is driven by Andrea to enable one of the SEN* outputs.
LATCHSE This line is asserted by Andrea to cause the current XA3-XA0 address to be 

latched to select one of the eight SEN* outputs.

4.6 Special Functions

The chip controller have a couple of special functions designed to optimize the System to 
Amiga chip interface.  As mentioned, the controller has a read/write FIFO that can also be used 
as a prefetch buffer.  This allows transfers between Chip RAM and other RAM to go fast, even 
when burst transfers aren't possible.  The direction of prefetch can be set for increment or 
decrement, allowing transfers to go either way.  It also allows all writes to be buffered, so they 
run in zero wait states until the FIFO is full.  Note that chip register access will always cause the 
read FIFO to be invalidated or the write FIFO to be flushed before access, and that chip register 
access does not get buffered or prefetched.

Two conversion functions are also supported.  The first of these provides a mechanism for 
efficient chunky pixel to bitplane conversion, based around 8-bit chunky pixels.  The other 
provides an efficient mechanism for certain kinds of bitplane to chunky pixel masking and 
conversion.  Doing this in hardware is relatively simple and will speed up software considerably.

4.7 Amiga Chip Controller Summary

The chip controller specification, as presented here so far, considers the signals necessary 
to implement controllers for an AAA Chip subsystem.  The support of zero wait writes, high 
speed burst transfers, and full speed DRAM cycle on the Chip RAM bus make this a major 
improvement in the Amiga system architecture, all but eliminating the Chip bus bottleneck 
except in very high bandwidth modes.  Other Amiga Chip architectures, such as “AA” or “AA+” 
will define a different Chip Controller. The current signal summaries are:
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Signal Group                         Count
JTAG Interface     5
AMI Bus Interface   46
Chip Bus Interface   48
Chip Bus Arbiter     5
Chip RAM Interface   45

 GRAND TOTAL  141

4.8 Notes on SAIL History

Since the Acutiator project was started considerably before any serious systems work was 
done with the AAA chip set, a good bit of consideration was given to dealing with the AA chip 
set.  Unlike AAA, the AA design is pretty unflexible, designed to sit on a 68000 or 68030 bus 
with a little bit of work.  AA has all the mapping and bus conversion requirements of AAA, but it 
adds some extra concerns.

The main concern of the AA system on a high-end or even med-range Amiga computer is 
its video bus saturation at even relatively uninteresting display resolutions.  In order to get around 
this problem, a two-chip solution was proposed for gluing AA into Acutiator systems.  The first 
of these chips was a SAIL controller for AA.  This was analogous to the AAA SAIL: it provided 
memory mapping, bus conversion control, memory control, etc.  This is more difficult for AA, 
since there is no way to directly take control of the memory control signals, they must be 
externally tri-stated or processed through the AA SAIL.  In any case, it could be done.

The interesting part of the AA SAIL implementation is the second chip, MOBI, a 
complex data path interface device that would act under the direction of the AA SAIL.  This part, 
together with SAIL, managed a 64-bit RAM bus, a 32-bit AMI bus, and a 32-bit Chip bus.  The 
two halves of the RAM bus would appear interleaved from the bitplane access point of view, so 
that, even in high video saturation modes, video fetch would be out of the way of CPU access 
very quickly.  This allowed a fully saturated AA system to offer nearly full bandwidth to the host 
CPU.  Additionally, the Chip RAM prefetch buffering mechanism, retained in the AAA SAIL 
chip, could boost this performance to nearly twice the A3000/A4000 level of performance for 
linear accesses, even with full video saturation occurring.

The 64-bit RAM bus is a bit of overkill for an AAA implementation of SAIL, especially 
since such a design can't be done in a single controller chip.  The video RAM of AAA achieves 
much the same effect, by removing video  contention from the main RAM bus.  However, such a 
design may be interesting to consider for other chip set interfaces, and may even be a thing to 
consider as a built-in feature for future Amiga chip sets (of course, plenty of new features, such 
as a native AMI bus interface, should be considered for future Amiga Chips assuming Acutiator 
as specified here becomes a reality).
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4.9 The “AAA” SAIL Chip

The Synchronous Amiga Interface with Latch device, SAIL, is a single Chip 
implementation of the Amiga Chip Controller for use with the AAA Chip bus subsystem defined 
by the Andrea Chip.  A diagram of this is shown in Figure 4-1.  This is to be built as a 160 pin 
PQFP in 0.8um CMOS.   The basic 141 pins for Amiga Chip Controller signals, plus four VDD 
pins and six VSS pins comes to a total of 151 pins, leaving nine spares. 

4.10 Register Mapping

The mapping of SAIL registers is shown in Figure 4-2.  These 32-bit registers reside at 
the fixed SAIL address, $00DC0000.  These registers control the translation of AMI bus to Chip 
bus cycles, the interface used to access Chip RAM, various speed controls over Chip RAM 
mastered with the AAA “high-priority” interface, and some pixel type conversion functions.  
Additionally, some control over the location of the Chip bus facilities is provided, so this part can 
easily be used in non-standard applications (eg, AAA Zorro cards rather than modules or 
motherboards, etc.).

Figure 4-1: The AAA SAIL Chip
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4.10.1 The ID/Version Register

The first SAIL register is the ID/Version register, at offset $0000.  Software uses this 
register to adapt itself to future versions of the device.   The chip ID is an ASCII “SA”, in the 
most significant word of the register.  Original version and revision codes, in the two least 
significant bytes of the register, are both 0, and are incremented based on new releases of the 
chip.  This register is illustrated in Figure 4-3.

Figure 4-2: SAIL Register Map



V7.0 Architecture Specification for Acutiator 4-9

4.10.2 SAIL Control

The next register, at offset $0004, is the SAIL Control Register.  This register controls 
various aspects of the AMI bus to Chip bus bridge as implemented in the SAIL chip.  The 
register bits are as follows:

0 FIFO Enable
Setting this bit enables the write buffer function of the SAIL FIFO.  This causes 
consecutive writes to be buffered for a burst transfer to Chip RAM.  Writes are flushed 
when the FIFO is full, when a read cycle follows, or when access to a non-contiguous 
address is made.

1 Prefetch Enable
Setting this bit enables the read lookahead function of the SAIL FIFO.  This causes a read 
of Chip RAM to actually run a page-mode cycle to Chip RAM.  Subsequent reads will 
read from the FIFO rather than cause a Chip bus access if they're consecutive.  Read data 
is cleared when a write cycle follows or when access to a non-contiguous address is 
made.

2 Prefetch Direction
This specifies the direction for the prefetch to FIFO.  If a burst cycle is run, this bit is 
ignored for that cycle and normal burst mapping rules apply for two, four, or eight word 
burst.  A zero specifies an incremental prefetch, a one specifies a decremental prefetch.

4 I-Cache Enable
When set, this bit allows instruction caching of Chip RAM.  When clear, Chip RAM 
instruction caching is inhibited via standard AMI bus hardware protocols.  Depending on 
the host processor, additional software control may be required to manage caching.

5 D-Cache Enable
When set, this bit allows data caching of Chip RAM.  When clear, Chip RAM data 
caching is inhibited via standard AMI bus hardware protocols.  Depending on the host 
processor, additional software control may be required to manage caching.

6 Access Mode
This bit controls the protocol used by the SAIL device to access the Chip RAM bus.  
When clear, the standard chip-bus-clocked protocol is run, and the AMI bus synchronizes 
with the Chip bus as necessary.  When set, the SAIL chip runs a “high-priority” Chip 

Figure 4-3: The SAIL ID/Version Register

Figure 4-4: The SAIL Control Register
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RAM access, where it drives the Chip bus signals synchronously to the AMI bus clocks.  
The timing for this is based on the RAM Timing Register sets described later in this 
chapter.

31 Amiga Reset
This bit provides software-controllable reset over the Amiga chips.  It powers up low, 
indicating the reset condition.  Several registers here are generally initialized by the host 
CPU before setting this bit high and allowing the Amiga chips to start up.

4.10.3 Chip Register Base

This register, at offset $0008, is the base address of the 64K space defined for “AAA” 
Chip registers.  This register powers up defaulting to $00DF0000, but may be changed to any 
natural 64K boundary by the controlling CPU.  Among other things, this makes it easy for the 
SAIL chip to act as a controller for Zorro card implementations of the “AAA” chip subsystem.

4.10.4 Chip RAM Base

This register, at offset $000C, is the base address of the 16MB space defined for “AAA” 
Chip RAM.  Prior to the initialization of this register, Chip RAM is available only at the original 
2MB space starting at $00000000.  Current Acutiator specifications call for extended Chip RAM 
to be located based at $01000000, but this relocation mechanism allows Chip RAM to be located 
at any natural 16MB boundary.   

4.10.5 Chip RAM Configuration

This register is initialized to the basic configuration codes to be sent to the “AAA” chipset 
in response to a Chip RAM configuration cycle.  However, the SAIL chip can resolve holes in 
the bank-map of the Chip RAM, allowing much easier support of SIMM-based systems.  
Software writes the actual bank settings here, the SAIL chip generates the bank-contiguous 
version for the configuration cycle.

The format of this is just like that of the RAMATTR register in Andrea.  There are eight 
logical banks of RAM, where bank N is represented by nybble D(N*4+3)-D(N*4).  The meaning of 
each bit in the nybble is as follows:

Bit       Name               Meaning
3 Slot filled This is low when filled, high when empty.
2 RAM size This is low for RAM with 9 address lines, high for RAM with 10.
1 BLIT chip This is set high to indicate a satellite blitter exists for this bank.
0 RAM type This is set low for page-mode RAM, high for VRAM.

The SAIL chip doesn't mandate the mechanism for determining the type of RAM used in 
the system.  A memory module-based machine may use ID codes like the “Nyx” prototype 
system, which allow SIMM-like modules to be used for upgrades.  A board with a fixed memory 
arrary may have software poll RAM or initialize it from ROM, based on any memory type 
constraints the board may add.
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4.10.6 The Plane Conversion Mechanism

The next five registers support a mechanism for converting a bit planar image to a series 
of 8-bit chunky pixels.  This can be used for efficient mask conversions and other such functions.  
The first register is the Planar Source register.  The least significant byte here accepts a byte of 
bitplane data and starts the conversion process.  Bits 7-0 in this register correspond directly to 
bytes 7-0 in the 64-bit register at offset $0110.  When a bit in the Planar Source register is 0, the 
corresponding byte is loaded from the least significant byte of the Chunky Source 0 register at 
$0104.  Similarly, when a bit in the Planar Source register is 1, the corresponding byte is loaded 
from the least significant byte of the Chunky Source 1 register at $108.

4.10.7 The Data Conversion Table

The next set of registers contains two separate 32-byte tables, for the conversion between 
chunky and planar data.  The chunky table represents 32 consecutive 8-bit chunky pixels, while 
the planar table represents 32-bits each of the the corresponding 8 bitplanes.  The conversion 
matrix is as follows.  The chunky table looks like this:

$0200 P0,7 ... P0,0 P1,7 ... P1,0 P2,7 ... P2,0 P3,7 ... P3,0

$0204 P4,7 ... P4,0 P5,7 ... P5,0 P6,7 ... P6,0 P7,7 ... P7,0

$0208 P8,7 ... P8,0 P9,7 ... P9,0 P10,7 ... P10,0 P11,7 ... P11,0

$020C P12,7 ... P12,0 P13,7 ... P13,0 P14,7 ... P14,0 P15,7 ... P15,0

$0210 P16,7 ... P16,0 P17,7 ... P17,0 P18,7 ... P18,0 P19,7 ... P19,0

$0214 P20,7 ... P20,0 P21,7 ... P21,0 P22,7 ... P22,0 P23,7 ... P23,0

$0218 P24,7 ... P24,0 P25,7 ... P25,0 P26,7 ... P26,0 P27,7 ... P27,0

$021C P28,7 ... P28,0 P29,7 ... P29,0 P30,7 ... P30,0 P31,7 ... P31,0
 

The planar table looks like this:

$0218 P24,7 ... P24,0 P25,7 ... P25,0 P26,7 ... P26,0 P27,7 ... P27,0

$0300 P0,0 ... P7,0 P8,0 ... P15,0 P16,0 ... P23,0 P24,0 ... P31,0

$0304 P0,1 ... P7,1 P8,1 ... P15,1 P16,1 ... P23,1 P24,1 ... P31,1

$0308 P0,2 ... P7,2 P8,2 ... P15,2 P16,2 ... P23,2 P24,2 ... P31,2

$030C P0,3 ... P7,3 P8,3 ... P15,3 P16,3 ... P23,3 P24,3 ... P31,3

$0310 P0,4 ... P7,4 P8,4 ... P15,4 P16,4 ... P23,4 P24,4 ... P31,4

$0314 P0,5 ... P7,5 P8,5 ... P15,5 P16,5 ... P23,5 P24,5 ... P31,5

$0318 P0,6 ... P7,6 P8,6 ... P15,6 P16,6 ... P23,6 P24,6 ... P31,6

$031C P0,7 ... P7,7 P8,7 ... P15,7 P16,7 ... P23,7 P24,7 ... P31,7

Both tables are read/write, basically accessing the same data in different ways.  They're 
organized to allow CPU bursts from 32 or 64-bit processors, as well as multi-byte moves.  Since 
the size of the table and conversion is fixed, this can be implemented as a simple hardwired 
matrix rather than a shifting mechanism.  Therefore, all conversions are instantaneous, the 
conversion is bidirectional, and there's no requirement in the machinery to convert a certain 
number of pixels before anything can be done with them.
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4.10.8 Chip RAM Timing

There are  four sets of five registers each devoted to the control of Chip RAM timing 
during “high-priority” Chip bus accesses.  The sets are at $0400 for single-beat reads, $0420 for 
single-beat writes, $0440 for burst reads, and $0460 for burst writes.  Each RAM timing group 
consists of four waveform registers and a counter.  The cycle counter determines the total number 
of clocks used for the DRAM cycle, which can't exceed limits imposed by the Chip bus interface.  
The waveform registers drive RAS*, address MUX, CAS*, and latch control based on this cycle 
count.

4.11 Decode Mapping

The SAIL chip provides mapping for Chip RAM and Chip registers.  The first two 
megabytes of Chip RAM runs from $00000000-$001FFFFF.   This same two megabytes is 
repeated with the rest of Chip RAM in the programmable range, which is by current conventions 
set to $01000000-$01FFFFFF.  Chip registers are located starting at $00DFF000 by default, but 
can be realigned to any 64K boundary as mentioned.  The range $00DFF000-$00DFF1FF is 
mapped as 16-bit space, with proper word to longword funneling done.  The rest is 32-bit register 
space.  Finally, the SAIL chip's registers are based at $00DC0000.
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Chapter 5
The Expansion Controller

Standard Amiga system expansion is managed in Acutiator machines by the Expansion 
Controller chip.  Its purpose is to convert AMI bus cycles into Zorro bus cycles, Zorro cycles into 
AMI bus cycles, and manages expansion bus arbitration.  It is designed to be completely self-
contained, relying only on the AMI bus, a 28MHz clock input, and a few external buffers for 
support of the bus reset signals.  This makes it independent of the Chip Bus architecture.  This 
chip works something like the Level II Buster for the Amiga 3000 systems, though it manages all 
address, data, and control paths between the buses.   The data path incorporates a write buffer, 
which acts as a write latch for Zorro II bus cycles and as a burst FIFO for Zorro III cycles.  The 
chip also incorporates a DMA controller for high speed bus to bus transfers.

When the AMI bus is acting as bus master, address decoding decides between Zorro II 
and Zorro III modes of operation.  In most respects, the Expansion Controller support of Zorro II 
works like that of Fat Buster.  Caching is mapped as in the Amiga 3000, according to the Zorro II 
rules first defined for the A2630 system.  The Expansion Controller of course manages both 
address and data paths, and will latch Zorro II data on writes.  For uncached burst writes, an 
entire line is buffered, and data bus bridging for 32 to 16 bit is managed.  Behavior under Zorro 
III is similar, except that caching is permitted according to the Zorro III bus cache control line.  
In Zorro III mode, AMI bus burst cycles are converted to Zorro III multiple transfer cycles.  The 
FIFO serves to improve the efficiency of this, as the entire burst transfer can be timed based on 
the specifics of each bus, rather than the current Amiga 3000 design, which incurs a full synch-
down penalty after each word transferred.  

If, during any AMI Bus to Zorro bus translation, two Zorro PICs collide, the cycle is 
terminated immediately.  The Zorro data bus is tristated, the BERR* signal is driven on the Zorro 
bus, and the ET* and Collision Error code are driven on the AMI Bus.  Other sources of BERR* 
on the Zorro bus result in ET* and the Unspecified Expansion Error code are driven on the AMI 
bus.  ET* on the AMI bus doesn't normally result in BERR* being driven on the Expansion Bus.

When the Zorro bus becomes master, the Expansion Controller serves to translate Zorro 
cycles into the appropriate AMI bus cycle.  For Zorro II masters, this involves a data bus bridge 
on odd-word cycles, as the 16-bit Zorro II device accesses 32-bit System Bus resources.  For 
Zorro II devices, this is a simple bus to bus conversion, with write latching supported.  The 
Expansion Controller does not do Zorro III to System Bus burst conversions.  This kind of 
conversion is aways inefficient, since all of the Zorro III cycles must be monitored before any 
determination can be made as to whether or not the subcycles reside in the same quadlongword.  
The write latching does improve performance, though, as it tends to make the bus transfers 
somewhat pipelined, hiding the synch-down time normally associated with this kind of transfer.  
Additionally, all AMI bus resources are mapped as uncachable to Zorro III bus masters, at least 
for the moment.  It will be necessary to implement the Zorro III multiprocessing extensions with 
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bus snooping, and snooping translations to the AMI bus, before a Zorro III device can safely 
cache any AMI bus resources.

The Expansion Controller fully supports Zorro III quick  interrupt cycles.  When it gets a 
response to a vector polling cycle, it will request the use of that interrupt via the IR* line.  If the 
Motherboard Controller grants the interrupt for that cycle, IG* is returned immediately (the 
Motherboard Controller decides whether it requires the interrupt very quickly, so by the time 
polling is complete, the decision has been made).  If not, the cycle is terminated without a vector 
phase; the responding devices will get their chance again during the next interrupt response cycle. 

The Expansion Controller may ultimately support the Zorro III directed interrupt 
extensions, though they are not presently called for by this specification.  Full support of directed 
interrupts would allow a Zorro III device to signal the DSP3210 or other coprocessor directly, 
rather than routing such signals though the host processor as is currently the requirement.  
Another possible extension is to provide interrupt vector registers for slow Zorro bus interrupts, 
much as the Motherboard Controller does for motherboard I/O.

Another function of the Expansion Controller is bus arbitration.  It discriminates between 
Zorro II and Zorro III requests by sampling on the C7M clock.  Software can assign prorities 
between Zorro II or Zorro III masters, but Zorro III requests have strict priority over Zorro II 
requests.  Either request will result in a standard AMI bus request cycle being run to the AMI bus 
arbiter.

The final Expansion Controller function is the DMA controller.  This mechanism permits 
transfers to be managed very efficiently between the AMI bus and the expansion bus (or, for that 
matter, transfers across either bus).  This controller supports a flexible transfer scheme that 
allows it to service a linked list of in-memory transfer jobs before requiring intervention from the 
host processor.  Intervention is signalled via an interrupt, which can be vectored in hardware or 
software and prioritized with respect to the other expansion interrupts.  Optionally, this interrupt 
can be run to an interrupt channel of the System Controller and handled at the system priority 
level rather than the expansion priority level.

5.1 The JTAG Test Port

As in all Acutiator chips, a test port for the IEEE P1149.1 boundary scan protocol is 
defined.  While such a port isn't vital to the operation of the device, we're convinced that board-
wide JTAG support will be  useful for both Chip and System testing.  The pin requirements are:

Signal(s)                                  Count
Clock 1
Mode Select 1
Data 2
Reset 1

TOTAL 5
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The actual test register map will be defined based on the chip implementation, it doesn't 
belong in this architecture specification.  However, we do expect  any implementation will at the 
least support the normal boundary scan functions.

5.2 The Clocks

A minimum number of input clocks on the Expansion Controller manages to keep the 
requirements independent of anything but motherboard basis clocks.  The single 28MHz video 
basis clock is used to generate required expansion bus clocks and synchronization to the Zorro II 
bus.  Other clocks are detailed as part of the AMI bus interface.  The pin count is:

Signal(s)                                 Count
Input clocks 2
Output clocks 5

TOTAL 7

Input Clock

C28M 28MHz Zorro II basis clock.

Output Clocks

C1* Bus clock, 3.55MHz-3.58MHz.
C3* Bus clock, 3.55MHz-3.58MHz, 90° behind C3*.
C7M Bus clock, 7.09MHz-7.16MHz.
CDAC Bus clock, 7.09MHz-7.16MHz, 90° behind C7M.
E Bus clock, 709kHz-716kHz, 40%/60% duty cycle.

5.3 The AMI Bus Interface

Virtually all of the AMI bus signals go to the Expansion Controller.  It needs full address, 
data, and control in slave mode during AMI bus to Zorro bus conversions, and address, data, and 
control in master mode during Zorro to AMI bus conversion.  Additionally, the AMI bus basis 
clock provides synchronization for all AMI bus events.  The initial pin count estimate for this 
subsection is:

Signal(s)                                   Count
Clocks   3
Adresss/Data Bus 32
Master/Slave Bus 11
Additional  Control   2
Interrupt   1

TOTAL 49
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AMI Bus Signals

BCLK AMI bus basis clock.  All AMI bus signal transitions are references to this 
clock.

DCLK Double-speed AMI bus clock.
Ø AMI bus phase clock.  This clock determines the multiplexing of the AMI bus.
AD31-AD0 AMI bus address/data signals.
MS10-MS0 AMI bus control signals.
FRST* Full System reset strobe.
CRST* CPU Reset strobe.
INT* Open-drain, active low interrupt output.

5.4 Host Arbitration Signals

This group consists of signals used to obtain resources from the host processor bus.  
There are two resources that must be requested by the Expansion Controller: the right of 
mastership of the System Bus and the right of response to a particular interrupt.  The signals 
required are counted:

Signal(s)                                 Count
Bus Arbitration 3
Interrupt Arbitration 2

 TOTAL 5
Bus Arbitration

BR* Bus request, asserted by EPIC when it requires the AMI bus.
BG* Bus grant, asserted to EPIC indicating that it may master the AMI bus.
BB* Bus busy, asserted by EPIC while mastering the AMI bus.

Interrupt Arbitration

IR* Interrupt request, asserted  in response to a quick interrupt request cycle.
IG* A grant indicating that the Expansion Controller may continue interrupt 

service with a vector cycle.

5.5 The Zorro Bus Interface

Most of the Zorro bus signals go to the EPIC chip.  The Zorro equivalents of every AMI 
Bus signal must go here, along with signals specific to the Zorro bus itself.  The EPIC chip needs 
to act as a Zorro bus master when the Zorro bus is being mastered by the AMI bus or the DMA 
controller.  Going the other direction, the EPIC chip needs to make the AMI bus look like a Zorro 
bus slave when a Zorro bus  master accesses an AMI bus resource.  The signals required for this 
are:
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Signal(s)                                Count
Multiplexed A/D Bus 24
Static Address/Data 14
Control 19

 TOTAL 57

This represents a full set of Zorro signals.  The only additional pin requirements would be 
for enhancements of the current Zorro III specifiction, such as support of the directed interrupt or 
cache coherency extensions, which aren't currently planned for in Acutiator.  Please refer to The 
Zorro III Bus Specification for more details on Zorro bus signals.

Address/Data 

EAD31-EAD8 Multiplexed address/data bus, which forms part of the Zorro II mode non-
multiplexed address and data buses.

EA7-EA2 Non-multiplexed address bus.
ED7-ED0 Non-multiplexed data bus.

Control

LOCK* Bus lock signal in Zorro III mode, A1 in Zorro II mode.
EDS3*-EDS0* Data byte strobes.
FC2-FC0 Function codes, indicate processor address space type.
FCS* Zorro III mode full cycle strobe.
CCS* Zorro II cycle strobe.
READ Data direction strobe.
MTCR* Zorro III mode multiple transfer cycle clock, Zorro II mode DTACK* delay 

strobe.
MTACK* Zorro III mode multiple transfer cycle slave acknowledge.
DTACK* Data transfer acknowledge.
CINH* Cache inhibit strobe in Zorro III mode, DTACK* override in Zorro II mode.
DOE Data buffer enable strobe.
BERR* Bus error acknowledge.
ERST* Main bus reset signal.
EHLT* Bus halt signal.  When asserted with ERST*, this indicates a full system reset 

rather than a simple I/O reset.

5.6 Zorro Master/Slave Control

The final set of Expansion Controller signals is for the management of Zorro bus master 
and slave devices.  Each channel on the Zorro bus requires three individual control lines, two for 
the DMA channel, one for slave identification and interrupt arbitration.  The pin requirements for 
a device capable of supporting six channels is:
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Signal(s)                                 Count
DMA Channels 12
Slave Channels   6
DMA support   3

 TOTAL 21

There is hard limit on the number of Zorro channels that can be supported.  Each slot 
requires three individual pins, which get added to the channel dependent signal groups.  This 
specification suggests that six channels are sufficient for our needs.

Zorro Channel Support Signals
 
SLV5*-SLV 0* Slot-specific slave response and interrupt arbitration lines.
EBR5*-EBR0* Slot-specific bus request lines.
EBG5*-EBG0* Slot-specific bus grant lines.  The format of the grant follows the format of the 

request.
BGACK* Bus grant acknowledge for Zorro II protocol bus masters.
OWN* Bus ownership for Zorro II protocol bus masters, bus address buffer direction 

control in all cases.
BCLR* Indicates to the that requests are pending.  

5.7 PIC Support Mode

So far, the Expansion Controller has been discussed in its primary capacity, that of an 
Expansion Bus Controller.  However, there is only a small amount of difference between a good 
Expansion Bus Controller and a good bus controller for plug-in cards.  Toward this end, it is 
suggested that the Expansion Controller have an alternate mode for PIC support.

In PIC mode, the Zorro and AMI bus interfaces are relatively unchanged.  The same kind 
of translations between modes that go on for a bus controller can go on for a PIC controller.  
Since the AMI bus is considerably easier to interface to than the Zorro III bus, and since the 
Expansion controller in this capacity buffers all Zorro III signals, this alone is a reasonable PIC 
controller.  On top of that, since the Expansion Controller contains a DMA controller, the use of 
it as a PIC controller potentially provides DMA capability for any device for no additional cost.

In order to function as a good PIC controller, the Expansion Controller in PIC mode 
reassigns a few of its pins that would otherwise be useless to a PIC.  The Controller manages the 
more complex aspects of the AUTOCONFIGTM protocol.  It handles board select based on the 
configuration chain and provides a chip select for a configuration ROM.  During the actual 
configuration process, it monitors reads of the ROM.  It understands the AUTOCONFIGTM 
protocol and, based on the sizing from the ROM read early in the config process, it sets up a 
configuration latch which is written to configure the board at the end of the process.  It passes 
configuration chain out, and then provides a board select output based on the configured address.  
The configuration process also programs the board's cachability and, optionally, a number of 
automatic chip selects (entered via a new AUTOCONFIGTM ROM field).
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The final functions of the Controller in PIC mode support interrupt and DMA activity generated 
by the PIC.  There are two ways to generate a Zorro III bus request with this device.  The first 
provides a standard set of request/grant lines which are automatically transformed to Zorro III 
register/unregister pluses.  Alternately, the Controller can be programmed to automatically 
generate requests based on the PIC-side address generated.  This is useful when an alternate 
processor of some kind inhabits the PIC.

Interrupts are managed pretty simply as well.  The Controller can store a vector, and it 
can respond to Zorro III interrupt vector cycles.  The PIC hardware simply supplies an interrupt 
input of any form to the Controller to cause it to handle a full Zorro III vectored interrupt cycle.  
PIC mode control registers that aren't programmed via AutoconfigTM can be initialized from 
either side of the bus.

The additional PIC-mode signals are described below.  The the only extra physcial pin 
needed is the Control/PIC mode selection pin.  Following that, a table of PIC-mode to Controller-
mode pin equivalences is supplied.

AUTOCONFIGTM Signals

CFGIN* Configuration chain input.
CFGOUT* Configuration chain output.
SLAVE* Board select response.  This is generated by the Controller during 

configuration, during a normal Zorro III access, or during an interrupt vector 
cycle.

Chip Select Signals

CS5*-CS0* Chip selects.  CS0* is the configuration ROM select during the configuration 
cycle, and thereafter if enabled.  Other selects are enabled and sized based on 
the configuration ROM data.

CINT* Interrupt to PIC, driven via a Controller register.
CACK* Interrupt acknowledge from PIC.

DMA Signals

ZBR* Standard request to the Zorro III bus.
ZBG* Standard grant from the Zorro III bus.
PBR* Asserted by the PIC to request the Zorro III bus.
PBG* Asserted to the PIC when a Zorro III grant is obtained.
PWANT* Asserted to PIC when the Zorro III bus wants PIC bus access.
PCLR* Asserted by PIC when its bus is clear.  Non-masters ground this all the time.

Interrupt Signals

ZINT* Zorro III interrupt output.  This is attached to INT2* or INT6* on the Zorro 
bus, depending on the level needed by the PIC.
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PINT* PIC bus interrupt input.  This can actually be active high or active low, edge or 
level sensitive. 

PIACK* PIC bus interrupt acknowledge output.  Clears the input interrupt if latched.

The PIC-mode reassigments are listed here.  Aside from these changes, a few other things 
should be noted.  The Zorro III bus clocks on the Controller still go to the Zorro III bus, but 
they're now inputs rather than outputs.  The PIC-side AMI bus still gets its timing from the 
BCLK and DCLK inputs.  The pin equivalents are:

Controller-Mode                      PIC-Mode
EBR5* CFGIN*
SLV5* CFGOUT*
SLV4* SLAVE*
EBG5* ROM*
EBG4*-EBG0* CS4*-CS0*
SLV3* CINT*
EBR3* CACK*
BR* ZBR*
BG* ZBG*
EBR2* PBR*
SLV2* PBG*
SLV1* PWANT*
EBR1* PCLR*
BGACK* ZINT*
IG* PINT*
IR* PIACK*

5.8 Expansion Controller Summary

The Expansion Controller specification, as presented here, incorporates the desired 
features of an advanced Zorro bus controller.  This device can substantially bring down the cost 
of full Zorro III support, while simultaneously increasing performance.  Its PIC mode will allow 
higher performance Zorro III cards to be built for significantly lower costs than heretofore 
possible.  A summary of the required signals is:

Signal Group                                        Count
JTAG Test Interface 5
Clocks 7
AMI Bus Interface    49
Host Arbitration Signals 5
Zorro Bus Interface   57
Zorro Master/Slave Control   21
Controller/PIC Select 1

GRAND TOTAL 145
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5.9 The EPIC Chip

The proposed implementation of the Acutiator Expansion Controller is the Expansion 
Pipeline Interface Controller, or EPIC chip.  This provides a complete Expansion Controller 
which can implement the full Zorro II/III bus without additional logic or assistance from other 
chips. The EPIC device runs from a normal +5VDC supply.  Based on a 160 pin gate array and 
the traditional CSG rule of thumb, it is estimated that a total of twelve power/ground pins will be 
required.  Based on an extraordinary number of high current drive I/O pins, a total of fourteen 
pins are reserved, nine VSS (ground)  and five VDD (supply) pins. This makes for a total of 157 
pins used, three currently unused.  Its expected any free prins remaining in the final design 
specification will be used for the power supplies as well.  The device can be implemented in 
CMOS technology equivalent to industry standard 0.8um design rules.  The chip should take 
under 20,000 gates, though based on the high pin count, its expected to be pad limited anyway.

Figure 5-1: The EPIC Chip
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5.10 Register Map

As with all Acutiator chips, the EPIC chip has a set of 32-bit registers at its own 
Controller-mode preassigned address, $00D8XXXX.  These registers are designed for single, 
serialized, uncached access, accessable in supervisor data space only.  A table of the twenty-one 
EPIC registers is show in Figure 5-2.  These control various aspects of the EPIC FIFO, DMA 
controller, Zorro channels, and bus-to-bus tranfer functions.  The EPIC chip is designed to 
support six Zorro expansion slots and an eight word FIFO, but the register map is designed to 
allow these items to be extended naturally.  Some registers are active only in Controller mode, 
while others are applicable only to PIC mode.  

In PIC-mode, the EPIC chip registers take up the first 4K of the PIC's memory, if enabled, 
once configuration is complete.  Rather than respond to $00D8XXXX, the EPIC chip responds to 
the Zorro III configuration address for configuration, then its configuration-assigned address 
from then on. PIC registers, like Controller registers, are available independently from both sides 
of the bus.  If the PIC registers aren't useful, they can be disabled via the PIC's controller 
configuration register. When disabled. chip selects and normal autoconfig support are available, 
but the DMA controller, interrupt handler, etc. are unavailable.  Following are descriptions of the 
individual registers.

Figure 5-2: EPIC Register Map
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5.10.1 The ID/Version Register

Like all Acutiator chips, the EPIC chip's base register is an ID/Version register, which is 
used by software to determine the presence and nature of any EPIC chip in a system.  This allows 
the system to bypass any expansion bus modules if the controller is not present, and it allows the 
system to adapt as necessary to revisions or new versions of the controller.  The chip type ID is 
an ASCII “EP”, in the most significant word of the register.  The original version and revision are 
both 0, and are incremented based on new releases of the chip.

5.10.2 Expansion Control

 The second register in EPIC is Expansion Control.  This register contains four 
miscellaneous active bits that control a variety of expansion bus parameters.  These parameters 
have some kind of global effect on the expansion bus.

0 Z2 FIFO Enable
This bit enables the EPIC chip's burst support with write FIFO for Zorro II bus accesses.  
This is reset to zero, writing a one enables the FIFO modes.

1 Z3 FIFO Enable
This bit enables the EPIC chip's burst support with write FIFO for Zorro III bus accesses.  
This is reset to zero, writing a one enables the FIFO modes.

2 FIFO Full
This flag is set by FIFO hardware when the FIFO is full, cleared otherwise.

3 FIFO Empty
This flag is set by FIFO hardware when the FIFO is empty, cleared otherwise.

6:4 FIFO Address
This specified the FIFO transfer address.  Normally this is managed by the FIFO logic, 
and of interest to error handling software in the event of a bus error during a FIFO 
controller transfer.

8 Disconnect
This field determines the relationship between the two buses.  On reset, the AMI and 
Zorro buses are essentially connected, only one master can be present at once, and it 

Figure 5-3: The EPIC ID/Version Register

Figure 5-4: The Expansion Control Register
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masters both buses.  When set to a one, masters can work independently on each of the 
two buses.

13:12  Z3 Map
This register controls the address space used by Zorro III.  This allows the motherboard to 
take over some of the Zorro III address space.  Currently, the most likely use of this 
would be for support of 512MB of motherboard DRAM.  Other modes support larger 
system models not yet necessary.  The encoding is as follows:

Setting Map Notes
     0 $40000000-$7FFFFFFF Power-up default
     1 $20000000-$7FFFFFFF
     2 $20000000-$EFFFFFFF
     3 $10000000-$7FFFFFFF A3000 Mapping

16 Soft Reset
A one written to this register causes an expansion bus reset. Writes of zero do nothing, 
reads return zero.

23:20  Last Access
This register stores the number of the expansion slave last accessed.  This allows software 
to relate expansion cards to slot numbers, and assists in error processing.

27:24  Slave Error
This register reports the slave that was involved in the last error generated by the EPIC 
chip.  The no-error condition sets this to 15.  This can happen by reset, by software after 
an error is processed, or by an error condition not involving a bus slave.  A collision 
condition sets a value of 14 here.

31:28  Master Error
This register stores the number of the expansion master selected when an error last 
occurred.  If the master does not involve the expansion bus, a code of 15 is stored here, 
which is also the reset value.  A code of 14 indicates that the bus controller's DMA unit 
was the bus master.

5.10.3 DMA Registers

The EPIC chip's DMA controller is programmed via a set of five registers.  The first four 
of these are address pointer or counter registers, while the final is a control register used to set up 
the DMA transfer.  

5.10.3.1 DMA Indirect

The DMA Indirect register is a 32-bit address register.  In some modes, this contains a 
pointer to a location somewhere in memory that contains a transfer descriptor structure.  This 
structure itself contains five longwords which correspond directly to the five DMA control 
registers.  This allows a linked list of transfer descriptors to be processed before any CPU 
intervention is necessary.
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5.10.3.2 DMA Source

This register contains a 32-bit source address for the DMA transfer.  In most transfer 
modes, this register is incremented or decremented by one for each longword transferred.  If 
source and destination are on different buses, cycles can be run on both buses simultaneously.

5.10.3.3 DMA Destination

This register contains a 32-bit destination address for the DMA transfer.  In most transfer 
modes, this register is incremented or decremented by one for each longword transferred.  If 
source and destination are on different buses, cycles can be run on both buses simultaneously.

5.10.3.4 DMA Count

This register contains a 32-bit count for the DMA transfer.  This register is always 
decremented by one for each longword transferred during a DMA transfer.  The EPIC chip can 
send an interrupt or run an indirect register load when this count passes zero.

5.10.3.5 DMA Control

The DMA Control register is responsible for determining the nature of the DMA transfer, 
and for actually starting the transfer when written.  The bitfields are as follows:

1:0 Transfer Mode
The nature of the transfer is set by this register.  When set to zero, no transfer takes place.  
When set to one, a simple longword by longword transfer takes place.  When set to two, a 
burst by burst transfer takes place.  Finally, when set to three, a bus optimized burst 
transfer takes place.  This choice is the same as normal burst transfer when run on the 
same bus, but when run between the AMI bus and the Zorro bus, it causes the DMA 
controller to master the source bus, fill the FIFO, relinquish the source bus, master the 
destination bus, empty the FIFO, and then go back to the source bus again.  This type of 
transfer can take longer than standard burst transfer, but it will use the system bandwidth 
more efficiently, so overall system performance may be boosted.

2 Transfer Direction
This bit is set to 0 for an incrementing transfer, to a 1 for a decrementing transfer.

3 Source Increment
This bit is set to cause source addresses to increment by one for each longword 
transferred.  When clear, the source address does not increment.

Figure 5-5: The DMA Control Register
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4     Destination Increment
This bit is set to cause destination addresses to increment by one for  each longword 
transferred.  When clear, the destination address does not increment.

5 TC Indirect
When the last longword of a DMA transfer is actually transferred, the terminal count 
condition is signalled in the DMA controller.  Setting this bit causes a reload of the DMA 
registers from the DMA Indirect pointer following the terminal count.

6 Terminal Count
This bit is set by the DMA controller to indicate that the terminal count has been reached.  
This can be inspected to check if a transfer completed properly, though in general, if some 
other error wasn't register, the transfer did complete.

11:8 Interrupt Priority
This sets the relative priority of the DMA controller interrupt with respect to the other 
expansion bus vectored interrupts.  

13:12  Interrupt Mode
This specifies the interrupt behavior of the DMA transfer.  When zero, no interrupt is 
generated.  When set to one, a terminal count condition will cause an interrupt based on 
the interrupt priority and possible interrupt vector set.  When set to two, the interrupt line 
is simply driven based on terminal count.  A value of three is undefined.

14 Interrupt Received
This bit is set by the DMA controller when an interrupt condition is signalled.  Clearing 
this will clear a mode two interrupt or non-vectored mode one interrupt,  while type one 
interrupts automatically clear in response to the interrupt vector cycle.

23:16   Interrupt Vector
This specifies an interrupt vector to use with mode one interrupts.  When set to the reset 
state of zero, no vector cycle is run.

31:28  DMA Priority
This register sets the priority of the DMA controller's activity relative to the channel 
priorities.  The controller is treated as a Zorro III device for priority purposes (eg, it 
superceeds all Zorro II DMA).

5.10.4 Channel Control

The EPIC device supports one Channel Control register for each of its six expansion 
channels.  These registers control various card-specific functions.  There are a total of seventeen 
active bits in each register, broken up into five functional fields.

0 Z2 Cache
This bit, zeroed on reset, controls whether or not the particular card is cached for Zorro II 
memory access.  A zero here inhibits caching, a one permits caching.  All Zorro II I/O 
accesses are cache-inhibited.

1 Z2 Lock
This bit determines the translation of locked AMI bus cycles to Zorro II cycles.  Some 
Zorro II devices don't properly support the Zorro II locking mechanism.  This resets to 
zero, which causes separate cycles to be generated.  If set to one, EPIC generates 
appropriate TAS-lock  read-modify-write cycles.    
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2     Z2 Unsynchronized
This bit determines the Zorro II DTACK* synchronization behavior.  Technically, all 
Zorro II devices run a minimal four clock cycle, and a slave's DTACK* isn't sampled 
until the S4/S5 transition of the Zorro II cycle.  While all bus masters have to support this, 
there's nothing technically preventing a slave from going faster.  On reset, this bit is 
zeroed and all Zorro II access on the specific channel is normally synchronized.  When 
set to one, slave-generated DTACK* is taken immediately, much like under Zorro III.  
This may permit some Zorro II cards to run faster without redesign.  This is of course 
done at the risk of the user, unless the card is qualified by its manufacturer to handle this 
faster cycling.

4 Funnel To Longwords
When set, this bit causes words to be packed into longwords, or longwords to be broken 
down into words, for Zorro to AMI bus translations.  If set for a Zorro III board, it causes 
D31-D16 to be used as the word, D15-D0 being ignored.  This resets clear, permitting 
natural bus to bus conversions.

5 Funnel To Burst
When set, this bit causes longwords to be packing up for burst cycles when going 
between the Zorro and AMI buses.  When reset, bursts only take place when Zorro III 
devices request them.

6 Funnel Unincremented
When set, this bit causes the Zorro bus address to be held throughout a funneled transfer.  
This permits efficient I/O to AMI bus data funneling.

11:8 Interrupt Priority
This field sets a priority for quick  interrupts from the given channel.  The reset value is 
zero, the priority is a four-bit signed value.

21:16   Quantum
This field specified the preferred optimal bus access quantum for the given channel as a 
Zorro III bus master.  This resets to zero, which specified the default Zorro III arbiter 
quantum, generally eight cycles.  The quantum is specified as a six-bit unsigned value.

31:28 Priority
This field sets a priority for bus mastership from the given channel.  The reset value is 
zero, the priority is a four-bit signed value.

5.10.5 AUTOCONFIGTM  Control

This register is present only in PIC mode.  It is initialized by various AUTOCONFIGTM 
registers when the host processor configures the board.  Basically, when in PIC mode but 
unconfigured, the EPIC chip watches bus activity and uses this to set itself up.

Figure 5-6: The Channel Control Register
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2:0     PIC Size
This register follows the Zorro size conventions.  It's initialized by a read to register 00, 
bits 2:0, during configuration.  The value is used for determining how many bits out of 
the EPIC chip's configuration comparator are significant.  The encodings, based in part on 
the Size Extension register as well, are as follows:

Extension=0 Extension=1
    PIC Size                   Board Size             Board Size             

000 8 megabytes 16 megabytes
001 64 kilobytes 32 megabytes
010 128 kilobytes 64 megabytes
011 256 kilobytes 128 megabytes
100 512 kilobytes 256 megabytes 
101 1 megabyte 512 megabytes
110 2 megabytes 1 gigabyte
111 4 megabytes RESERVED

3 Size Exension
Zorro III size extension bit, from register 08. bit 5.  This determines whether the Zorro II 
or Zorro III sizing conventions are used for the PIC Size register, as shown.

4 Autoboot ROM
This bit is set by the autoboot field in register 00.  If there's a boot ROM, the ROM* 
select is still generated once the board is configured, with sizes given in the ROM Size 
field.  If there's no boot ROM enabled, the ROM* select is generated only during 
configuration.

5 Cache Inhibit
This bit is set by the device/memory bit in register 08.  If the PIC is primarily of an I/O 
device nature, caching will automatically be inhibited after configuration

 25:24  CS Mode
This field, from register 0C, sets the chip select controls for the PIC.  When set to zero, no 
chip selects are generated.  When set to one, CS4* covers the whole board.  When set to 
two, CS4* covers the top half of the board, CS3*-CS0* are evenly spread over the bottom 
half.  When set to three, CS4* covers the bottom three-fourths of the board, with CS3*-
CS0* spread evenly over the top fourth of the board.  ROM* always overlays this setup 
over its defined range, when enabled.

27:26   ROM Size
This field controls the ROM* chip select.  ROM* is always generated before 
configuration to enable the AUTOCONFIGTM ROM. Once configured, the  ROM size 
varies based on the register 0C setting:

Figure 5-7: AUTOCONFIGTM Control  Register
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ROM Size                     Meaning
0 16K ROM
1 64K ROM
2 128K ROM
3 512K ROM

28 Hide
This bit sets the register hiding mode of the EPIC chip.  When Hide is zero, the EPIC 
registers occupy the first 4K of PIC memory, overlaying any ROM or other chip select.  
When Hide is set, the registers go away after configuration.

29 Address Detect
This bit is used as a bus arbitration aid.  When clear, a processor on the PIC bus must 
explicitly request the Zorro bus to force an arbitration and master the bus.  When this bit 
is set, any address that falls off the PIC in the global system memory map causes an 
automatic bus arbitration.

5.10.6 Com Control

This register manages communications between the Zorro and PIC buses when in PIC 
mode.  It manages interrupts between cards for simple I/O or multiprocessor signaling.

 7:0 Vector
This register specifies an interrupt vector to be used by the PIC for Quick Interrupt cycles.  
It powers up zero, and if left zero, interrupt generation will be handled the Zorro II way.

10 Type
This register specifies the type of interrupt input on the PIC side.  It's set to the default of 
zero for a level-sensitive interrupt, set to one for an edge-sensitive interrupt.

11 Polarity
This bit powers up zero, indicating an active low/low-going interrupt expected at the 
input.  A one written here causes an active high/high-going interrupt to be caught instead.

12 Received
This bit reads one when EPIC registers a PIC-generated interrupt of the specified type and 
polarity.  This can be written zero to clear.

13 Cause Zorro
A one written here causes an interrupt on the Zorro bus, just as if the interrupt line were 
asserted in hardware.  A PIC with processor on it may find this kind of interrupt simpler 
to generate than one using a hardware line.

Figure 5-8: Com Control Register
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31 Cause PIC
A one written here causes an interrupt to the PIC bus.  This bit will stay one until the 
interrupt is acknowledged.

5.10.7 Com Data

This is a simple dual-ported 32-bit register.  Simultaneous read/write access is available 
between the AMI and Zorro sides of the chip.  A bus lock on one side will hold off the 
completion of an access on the other side if they coincide.  PICs can use this for simple 
communication with the AMI bus master without the need to provide shared memory.  

511 Memory Mapping

The EPIC chip has very simple memory mapping rules.  In PIC mode, the rules are all 
based on AUTOCONFIGTM: Configuration ROM responds at $FF000000 until configured, then 
the chip responds for the supplied board addresses.  The individual chip selects within the board 
vary based on the board size, as mentioned previously.  Both busses respond to the same address 
encoding, though the registers are dual ported and may be accessed simultaneously by both 
busses.

In Controller mode, the memory mapping is based on normal system mapping rules.  The 
registers appear based at $00D80000 on the system or expansion bus.  The Zorro II memory 
space is mapped from $00200000-$009FFFFF, while the Zorro II I/O space is mapped from 
$00A00000-$00B7FFFF, and from $00E80000-$00EFFFFF.  Finally, the Zorro III space is 
mapped from $10000000-$7FFFFFFF.
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Chapter 6
The CPU/RAM Controller

The CPU/RAM controller provides the interface between the host CPU, a large block of 
DRAM, and the AMI bus.  This could be implemented using buffers, latches, and PALs, but an 
integrated solution is much more efficient.  The DRAM controller benefits from the integrated 
solution, and total system performance benefits from a DRAM interface optimized for the host 
processor.

Any particular CPU is likely to have its own CPU/RAM controller chip.  The point of this 
device is the creation of an optimized interface to the AMI and DRAM buses of an Acutiator 
motherboard.  The part described here is for MC68040 and, optionally, MC68030/MC68030 
processors.  A CPU/RAM controller for any other CPU is likely to be similar, though actual 
details will vary some.  

This chip manages the system ROM chip select as well, since ROM need to be on the 
CPU local bus to be cost effective and the DRAM controller's ROM mapping facility works hand 
in hand with the physical ROM select.  Also managed here are four MC68040 bus DMA 
channels, which mix into a single AMI bus channel.  This permits processor modules to easily 
support multiple bus masters, an advantage when the other bus masters directly support the 
MC68040 protocol. This also allows the same CPU/RAM controller to function on an alternate 
AMI bus module, perhaps to manage a CPU cluster in a multiprocessor system or another kind of 
'040 bus device that makes more sense as a separate AMI bus module.  Other features exist as 
well, these will be covered in more detail in the specific sections of this chapter.

6.1 The JTAG Test Port

As in all Acutiator chips, a test port for the IEEE P1149.1 boundary scan protocol is 
defined.  While such a port isn't vital to the operation of the device, we're convinced that board-
wide JTAG support will be useful for both Chip and System testing.  The pin requirements are:

Signal(s)                                   Count
Clock 1
Mode Select 1
Data 2
Reset 1

TOTAL 5

The actual test register map will be defined based on the chip implementation, it doesn't 
belong in this architecture specification.  However, we do expect any implementation will at the 
least support the normal boundary scan functions.
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6.2 The MC68040 Bus

The CPU/RAM controller is directly connected to the MC68040 address, data, and 
control bus.  This is necessary to provide the highest performance CPU to DRAM interface 
possible.  It also allows the CPU/RAM controller to provide an AMI bus interface for the 
MC68040 in a relatively efficient way.  Along with the basic MC68040 bus, the CPU/RAM 
controller provides a bus arbiter and other CPU specific resources.  The device allows the 
interface to be tuned specicially for different versions of the MC68040 and, optionally, the 
MC68020 or MC68030.  This is set up in the configuration register, described in a later section.

In order to save on pin counts, only 8-bits of the MC68040 data bus is connected to the 
CPU/RAM controller.  Controller registers are all 8-bit registers, though many form logical 32-
bit groups.   The pin count for the MC68040 bus interface is as follows:

Signal(s)                                       Count
CPU Clock 1
Address Bus 32
Data Bus 8
Control Signals 16
Interface Signals 1

TOTAL 58

MC68040 Bus Signals

CCLK The MC68040 Bus Clock.
A31-A0 The MC68040 Address bus.
D31-D24 The MC68040 Data bus.
SIZ1-SIZ0 The MC68040 size control bits.  These determine the size of the transfer 

according to standard rules.
TT1-TT0 The MC68040 transfer type bits.  DRAM typically responds to standard 

and MOVE16 types, registers only to standard Supervisor mode data 
cycles. 

TM 1-TM 0 The MC68040 transfer modifier bits.
R/W The MC68040 data transfer direction indicator.
TS* The MC68040 transfer start strobe.
TIP* The MC68040 transfer-in-progress strobe.
MI* The MC68040 memory inhibit strobe.  Memory and registers don't 

respond to their assigned addresses when this strobe is asserted.
LOCK* The MC68040 bus lock signal.  This indicates an atomic operation is in 

progress, the bus arbiter won't change masters as long as this is asserted.
TCI* The MC68040 transfer cache inhibit signal.  This is generated by a slave 

device to inhibit the on-chip caches of the '040.  In general, software 
support is also needed for cache control.

TBI* The MC68040 transfer burst inhibit signal.  When a slave can't support a 
burst transfer, it generates this to tell the '040 not to burst.
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TA* The MC68040 transfer acknowledge signal.  This is generated to cause a 
normal synchronous cycle transfer and termination.

TEA* MC68040 Transfer Error Acknowledge.  The system records the AMI bus 
error code for processor examination.

IDIS* Disables interrupts to host MC68040.

A pair of bits in the configuration register set the processor type supported by the 
CPU/RAM controller.  As mentioned, the support of the MC68030 and MC68020 are options 
that must be determined by the needs of the system design.  While the MC68040 is the obvious 
choice for high-end systems in 1992, medium-range systems may still find the MC68030 or 
MC68020 desirable to use, especially since the Acutiator machines are designed to be modular.  
For support of these processors, the MC68040 bus interface pinout is remapped as follows:

MC68040         MC68030/MC68020
TIP* AS*
TM2-TM0 FC2-FC0

LOCK* RMC*
TCI* CIIN*
TBI* CBACK*
TS* CBREQ*
TA* STERM* ('030), DSACK1* & DSACK0* ('020)
TEA* BERR*

Since there's no need to bus size, a 68030 can be driven completely from STERM*, 
whereas a 68020 can be driven from both DSACK* lines.  In all modes, the appropriate CPU bus 
interrupt acknowledge cycle is translated into an AMI bus interrupt acknowledge cycle. 

6.3 The AMI Bus Interface

An AMI bus port on the CPU/RAM controller allows an efficient conversion to be run 
between the MC68040 and the AMI bus for any time the MC68040 masters the AMI bus.  This 
also simplifies the case when an AMI bus master needs to access the RAM bus, since the DRAM 
controls can be derived directly from the AMI bus signals, only AMI bus address and data need 
to be driven onto the MC68040 bus for DRAM access.  The AMI bus A/D signal group is 
generated via buffer control signals generated in the CPU/RAM controller.  Four 16-bit 
bidirectional latching buffers are driven directly by the controller and the various bus clocks, no 
extra glue is needed for this interface.    The pins needed for this are as follows:

Signal(s)                                 Count
AMI Bus Clocks 3
Master/Slave 11
Address Buffer Control 3
Data Buffer Control 3

TOTAL 20
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While it's true that support of full address and data for both the MC68040 and AMI buses 
would result in a more efficient interface, it's just not enough of a performance boost to justify 
the massive size of the package that would require.

AMI Bus Signals

BCLK The AMI bus transaction clock, probably synchronous to the MC68040 
clock. It's possible, but not necessary, to support asynchronous clocking of 
the AMI and MC68040 bus -- this is implementation dependent.  
Additionally, the synchronization phase between BCLK and CCLK is set 
by a bit in the configuration register. 

DCLK The AMI bus double-speed clock.
Ø The AMI bus phase clock.
A/D31-A/D0 The AMI bus Address/Data group.
ABDIR Direction control for the address buffers between AMI and MC68040 

buses.
ABLT Latching control for the address buffers between the two buses.
ABOE* Output enable for the address buffers between the two buses.
DBDIR Direction control for the data buffers between the AMI and MC68040 

buses.
DBLT Latching control for the data buffers between the two buses.
DBOE* Output enable for the data buffers between the two buses.

The AMI bus requires that all burst cycles be inhibitable.  If the MC68040 bus, or any 
other bus interface, has any reason to not always support burst inhibition, the CPU/RAM 
controller will need to manage burst shorting as part of the AMI bus interface.  This is simply a 
way to quickly cancel a burst cycle that's overrunning what the responding AMI bus slave can 
handle.  When the AMI bus slave is no longer responding to a cycle, but the cycle continues, the 
controller needs to continuously assert the MC68040's TA* signal until the cycle is terminated.  
This may be necessary for MC68060 processors if not the MC68040 today.

6.4 The DRAM Controller

The CPU/RAM controller manages a high-speed DRAM subsystem for the Host bus.  
The actual support logic included handles a total of 64MB, 128MB, 256MB, or 512MB of 
DRAM, depending on the configuration.  It is specified with Fast Page Mode 32-bit JEDEC 
SIMMs in mind, but will of course support individual memory chips organized in a similar way.  

The DRAM bus can be configured as a one, two, or four-way interleaved 32-bit bus or a 
one or two-way interleaved 64-bit bus.  It's expected that the Acutiator systems will adopt a 
standard RAM bus socket either 64-bits or 128-bits wide, though current CPUs are of course not 
so wide.  This interleave provides fast (four clocks at 25MHz with 80ns DRAM, though 
practically any DRAM speed is supported) initial access and one-clock burst read and write for 
any MC68040 bus device (AMI bus access it typically somewhat slower). 
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 Support for page-mode DRAM and CAS banking allows standard page-mode memory to be 
used for the fastest cycle types, rather than Static Column memory with OE* control as required 
for high speed DRAM access with the A3000 RAMSEY design.  Although the MC68040 will 
only run four word burst cycles, the controller supports 8 word bursts from the AMI bus.  The pin 
count estimate is:

Signal(s)                                              Count
Memory Clock 1
Multiplexed Address 13
DRAM Control 20
Buffer Control 8

TOTAL   42

The Acutiator RAM bus will be capable of supporting either 32-bit or 64-bit RAM buses, 
though this controller, being designed with the MC68040 in mind, needs only support actual 32-
bit configurations.  The control signals to the DRAM bus are the same for 32, 64, or 128-bit 
systems, it's the interleaving mechanism that's different. The difference in interleaving is going to 
affect performance, but not addressing size.  All systems can support either 128MB or 512MB of 
possible RAM address space, depending on the programmed setup.  The 128MB system is the 
practical limitation for a four-slot SIMM-based machine using 1992 technology.  Next generation 
DRAM densities may make a 512MB system feasible.

Software also sets up the level of interleave.  This determines just how different RAM 
banks will be addressed.  When there's only one DRAM bus, burst cycles are slower, the CAS* 
signals control banking much like the RAS* signals, and most of the output enable and latching 
signals are ignored.  When the interleave is 2:1 or 4:1, some or all of the CAS* lines are used 
mainly as byte enables, two or four banks of memory are accesses simultaneously, and the output 
enable lines are used to determine which 32-bit word is actually driven to the processor bus.

Access to the DRAM bus by the AMI bus is split between the controller and some 
external buffers. Control signals for the DRAM subsystem are provided by the AMI bus and by 
the MC68040 bus independently of one another.  This allows each bus interface to be optimized 
for the DRAM interface in its way.  Data and address are kept common between the two buses in 
this implementation, so the AMI bus must master the MC68040 bus to access DRAM.  In its 
standard use, the MC68040 and AMI buses are mastered together by the same device, the 
controller is simply a manager of the protocol conversionbetween the two.  When used as a 
satellite '040 bus controller, the two buses are mastered separately, as explained later.

Memory Control Signals

MCLK This is the time base for the memory control.  It is required to be 
synchronous to the processor clock.  It may run at the MC68040 bus clock 
speed, or at twice that speed, depending on the speed of the '040 in 
question.

RET* This line is driven by a memory device that terminates its cycle earlier 
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than expected, as for memory devices with some kind of on-chip cache.
MA 13-MA 0 Main multiplexed address bus.  MA13 is only active for large mode 

systems, when SIMMs exceed 32MBx32.  These should be high current 
outputs, capable of driving all the DRAM that may be attached.

CAS15*-CAS0* Column address strobes.  They manage four banks, where the bank 
number for CASN is given by (N div 4) and the byte number in that bank 
by (N mod 4).

RAS1*-RAS0* Row address strobes, used to manage banks.
WE* The common write enable strobe for the whole RAM bus.  This should be 

a high current output.
DOE3*-DOE0* Data buffer enables for  up to four-way interleaving.
DLT 3-DLT 0* Data buffer latch for up to four-way interleaving.

6.5 The Bus Arbiter

The CPU/RAM controller provides a simple MC68040 convention bus arbiter.  This 
permits up to four MC68040 bus devices to run on a single AMI bus channel.  The arbiter runs in 
two basic modes, based on the setting of a single configuration pin.  The standard mode is set for 
an Acutiator host module.  In this mode, the master of the MC68040 bus and the master of the 
AMI bus are always the same.  Any request for mastership of the MC68040 bus is turned directly 
into a request for mastership of the AMI bus, and the AMI grant becomes the MC68040 grant.  
Address comparators on each bus watch the current master's activity to determine the direction of 
the data buffers between the two buses.

The alternate bus mastering mode is set by a bit in the configuration register.  When in 
this  mode, the CPU/RAM controller supports a satellite AMI bus module based on the MC68040 
bus.  This is mainly for support of shared-memory coprocessors, as it can glue any MC68040 bus 
device to an Acutiator AMI bus interface, completely with DRAM interface and intelligent 
arbitration.  In this case, there can be are different masters on the AMI and MC68040 buses.  The 
only time the two buses actually connect is when one bus needs to address resources from the 
other one.  Address comparators monitor the MC68040 bus for the need to cross over to the AMI 
bus.  When the MC68040 bus master needs AMI bus access, it will generate a standard AMI bus 
request and wait until a grant is received.  When the AMI bus master needs access to the 
MC68040 bus,  it generates a bus crossing request, via external address decoding logic, or it 
generates an AMI bus coprocessor override cycle (note that the configuration register also 
contains the slot ID for this).  The DMA control register in the controller determines the 
rearbitration latency for each mastership condition,  and which bus gets priority over the other in 
the event of a simultaneous mutual cross-access request.  Finally, the control registers for the 
CPU/RAM controller are seen by the MC68040 bus only; they overlap with the host processor's 
CPU/RAM controller registers and can only be changed by the satellite processor.  The signals 
needed are:

Signal(s)                                             Count
MC68040 Bus Arbitration 9
AMI Bus Arbitration 4

TOTAL   13
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Bus Arbitration Signals

BR3*-BR0* MC68040 bus request strobes.
BG3*-BG0* MC68040 bus grant strobes.
BB* MC68040 bus busy strobe.
ABR* AMI bus request strobe.
ABG* AMI bus grant strobe.
ABB* AMI bus busy strobe.
ABC* Bus crossing request from the AMI bus.  This is used only in satellite 

mode, and is generated by some external decoding logic.  When this line is 
asserted, the controller responds as the AMI bus slave, removes the grant 
from any MC68040 bus master, and gates the AMI bus over to the 
MC68040 bus as soon as it can.  This crossing is governed by the ABC* 
line, and will remain as long as the ABC* line is asserted or the AMI bus 
loses the bus based on crossing priorities set in the controller registers.

6.6 Other Local Functions

Currently, there are a couple of additional functions defined for the MC68040 bus.  The 
controller chip generates a that of ROM select, and supports associated ROM remapping in 
RAM. ROM cycles with Chip RAM overlay generate a MI* condition on the AMI bus so that no 
Chip RAM controller will respond.  

The controller also generates the autovector signal for the MC68040.  This was 
considered processor-specific enough to want to include it here, though there's no reason it 
couldn't have been generated elsewhere.  The controller waits for a device to respond on the AMI 
bus before asserting an autovector condition, since an AMI bus device may be supplying its own 
interrupt vector.  Unlike the A3000's vector support, this can be pretty fast since the AMI bus will 
indicate that a slave is responding very quickly, even if the response itself takes a long time to 
generate.

  Finally, there are various bits of configuration information needed by the controller 
setup at boot time.  There is a clock output and data input for a small serial ROM to set up this 
configuration data.  Note that there's no hard limit on the size of this ROM, but all bits beyond 
those defined for any implementation must return zero. 

Signal(s)                                             Count
ROM Select 1
Autovector 1
Configuration Control 2

TOTAL 4
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Miscellaneous Local Functions

ROM* ROM Chip Select.
AVEC* Interrupt autovector.
CFCNT Configuration serial clock.
CFSP Configuration serial data port.

6.7 CPU/RAM Controller Summary

The CPU/RAM controller provides a high performance DRAM controller for the 
MC68040 bus that's compatible with the Acutiator RAM bus conventions.  Additionally, it 
supports an MC68040 to AMI bus interface with full arbitration control.  It can also be used to 
support MC68040 bus multiprocessors in an Acutiator system.  A summary of the required pins 
is a follows:

Figure 6-1: RACE Chip Block Diagram
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Signal(s)                                             Count
JTAG Test Port 5
MC68040 Bus Interface 58
AMI Bus Interface 20
The DRAM Controller 42
The Bus Arbiter 13
Other Local Functions 4

GRAND TOTAL 142

That's the CPU/RAM Controller specification.  The next few sections cover a suggested 
implementation of this part, some register maps, and other assorted features of the device not 
already convered.

Figure 6-2: RACE Logical Register Map
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6.8 The RACE Chip Implementation

The Ram, AMI, and CPU/Expansion controller, or RACE chip, is a suggested single chip 
implementation of the CPU/RAM control device.  This will be a 0.8um CMOS gate array 
(smaller if available, this is very speed critical) of roughly 20,000 gates, housed in a 160 pin 
PQFP package.  The 142 pins required by the controller function, plus five VDD and seven VSS 
(based on traditional Commodore gate array conventions), will add up to the recommended 154 
pins, leaving six spares.

6.9 Register Map

The RACE chip contains a series of registers to allow control over bus conversion, ROM 
mapping, and RAM mapping and control.  Unlike all other Acutiator chips, the RACE chip 
registers are physically 8-bits wide, located on the high order byte of the 32-bit bus.  However, 
for consistency's sake, each set of four registers is treated as on logical register, something similar 
to register pairs used in autoconfiguration.  This section will discuss each register as if it were 
actually 32-bits wide, though of course the addressing is kept consistent with the physical 
realities of the implementation.  The logically mapped RACE registers are shown in Figure 6-2.

6.9.1 The ID/Version Register

The first register quad, at offset $0000, is the RACE ID/Version register.  Software uses 
this register to adapt  itself to future versions of the device.  The Chip ID is an ASCII “RA”, in 
the most significant word of the register.  Original version and revision are both 0, and are 
incremented based on new releases of the chip.

6.9.2 Configuation Control 

Several configuration options are managed by the configuration control register.  This is 
loaded via the RACE configuration serial ROM (a shift register can be used to provide jumper-
selection of some of these parameters). This register quad is at offset $0010.

Figure 6-3: The RACE ID/Version Register

Figure 6-4: The Configuration Control Register
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0 Clock Phase
This bit sets the phase relationship between the AMI bus's BCLK and the MC68040 bus's 
CCLK.  When zero, they're in phase, when one, they're 180° out of phase.  This may help 
optimize theinterface, based on clock speed.

1 Bus Connect
This bit determines the behavor of the MC68040 to AMI bus connections.  If zero, the 
buses are connected together as usual, with all arbitration in common.  This way, the 
current MC68040/AMI bus master has unblocked access to either bus, though of course 
only one master can be active at any given time.  When  set to one, each bus can run 
independently of each other, though they must run arbitrations when masters need the 
resources on each other's buses.  The DMA Control register manages functions that relate 
to the use of this part as  a satellite processor controller (eg, the two sides running 
independently).

3:2 Processor Type
These bits determine the type of timing to generate for the processor specified:

Setting             CPU Type
0 Standard MC68040
1 Low-current MC68040 (MC68LC040, MC68EC040)

 2 MC68030
 3 MC68020

6:4 Procesor Speed
This field indicates the speed of the MC68040 bus clock.  The options are as follows:

Setting             Speed
     0 25 MHz
     1 33 MHz 
     2 40 MHz
     3 50 MHz
   4-7 Reserved

8:7 ROM Speed
This field specifies the speed of the system ROM.  This lets the ROM speed be set on 
boot up without the ROM itself having to know how fast it is.

Setting             Speed
     0 100ns
     1 150ns
     2 200ns
     3 300ns

11:9 Slot ID
This field contains the Acutiator system module slot number.  The host processor is 
always slot zero, that's the only slot with a RAM bus extension on it..  When used as a 
satellite processor controller, the slot ID is read from the AMI bus connector and 
presented here.  It's also used in the bus controller logic to detect a coprocessor override 
cycle directed at this device.
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6.9.3 DMA Control

The next register quad, located at offset $0020, is the DMA control register.  This is used 
to tune various aspects of the bus arbiter.

3:0 Select Channels
While the RACE bus arbiter isn't as complex as the motherboard's arbitration scheme, it 
does have a little of that flavor.  Following register fields allow the RACE chip to drive a 
Modifier code (TM2-TM0) and transfer type code (TT1-TT0) during DMA and, 
optionally, use a different bus request protocol.  There are four bits here, one 
corresponding to each RACE DMA channel.  If one is set, it uses the special protocol 
mode, if not, it uses the default MC68040 conventions.

6:4 Modifier Type
This is the modifier code (TM2-TM0)  that RACE will drive onto the MC68040 bus when 
a selected channel is the bus master.  The transfer code in such a case is also driven to 
specify a normal transfer cycle.

7 Request Mode
This field, reset to zero on power-up, indicates the type of bus request generated by the 
potential master.  If zero, the device supports the MC68040 style BR*/BG*/BB* 
protocol, including arbitration snoop.  If one, the device supports a simple BR*/BG* 
protocol similar to that of the DSP3210.

 19:16  68040 Latency
This field determines how long the AMI bus should hold the MC68040 bus after a bus 
relinquish cycle.

23 Retry Priority
This bit is set to determine which bus, in the event of a simultaneous cross access, should 
be retried.  The default zero state causes the AMI bus to be retried, while setting this to 
one causes the MC68040 bus to be retried.

27:24  AMI Latency
This field determines how long the MC68040 bus should hold the AMI bus after a bus 
relinquish cycle.

6.9.4 Coprocessor Communications

This register, located at $0030,  is used to generate a coprocessor override cycle.  The 

Figure 6-6: The Coprocessor Communications Register

Figure 6-5: The DMA Control Register
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coprocessor number and command number are supplied during a write to this location, which is 
broadcast to the AMI bus.  Either a coprocessor responds or the normal bus timeout ends the 
cycle with no coprocessor response
.
2:0 Coprocessor Number

This is the coprocessor number.  During the initialization of a coprocessor module, this 
number is assigned by system software.  All coprocessors detect a set to seven.

6:4 Coprocessor Command
This is the three-bit coprocessor command code.  The only command coprocessors so-far 
recognize is the bus relinquish command, code zero.  This causes a coprocessor to get off 
its bus, useful when multiple coprocessors have local memory at the same global address 
and the host wants to master just one of them.

6.9.5 RAM/ROM Control

The next register manages basic overall physical structure of RAM and ROM.  It also 
provides a facility for ROM-in-RAM mapping.  This is located at $0100.

3:0 DRAM Size
This register controls the basic size of a bank.  One bank is the smallest independent 
RAS/CAS driven group, generally a whole or half of a SIMM module.  The size, in K-
longwords, is given by 2(DRAM Size + 8).  The largest bank supportable is 64MB.

6:4 CAS Banks
This register indicates how many of the CAS-driven banks are present.  There are always 
between one and four banks, the actual numbers possible depend on the bus interleave 
factor.

10:8 Bus Interleave
This register specifies the number of buffered and latched banks of DRAM.  This device 
can support one, two, or four banks.

13:12  ROM Size
The ROM can be mapped for various sizes.  This applies to both the physical ROM and 
any RAM emulation of it.  The size are:

Setting             Actual Size
     0 512 K
     1 1 MB
     2 2 MB
     3 4 MB

Figure 6-7: The RAM/ROM Control Register
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14 ROM Overlay
This bit sets overlay of the low memory area on the system.  Generally, this will be Chip 
RAM.  The Chip RAM controller is kept from responding to this address by assertion of 
the MI* control when Chip overlay is done.

27:18  Overlay Address
This field specifies the ROM base substitution address to generate when RAM is overlaying
ROM.  This may apply to Chip RAM overlay or last through reset, depending on the 
setting of the Overlay Mode field.

31:30  Overlay Mode
This field determines just what the ROM in RAM translation function does, how long it 
lives, etc. 

 Setting             Function
     0 No overlay.
     1 Overlay main ROM but not Chip RAM area, reset to zero.
     2 Overaay all ROM areas, don't reset.
     3 Reserved

6.9.6 RAM Base

This is a simple address register that locates the base address of the DRAM subsystem.  
The only real constraint is that it not conflict directly with another device and that it be an aligned 
address in Acutiator Fast RAM.

6.9.7 Refresh Control

The refresh control registers are based at $0020.  There are four programmable 32-bit 
registers.  The refresh cycle register determines the total number of clocks in a likely memory 
cycle.  The refresh RAS and refresh CAS registers contain waveforms for RAS and CAS during 
refresh.  Finally, the refresh count register determines the number of clocks that are counted 
between refresh cycles.  All refresh is done with CAS-before-RAS protocols.  With this 
programmable refresh generator, we should be able to support DRAM long into the future.

6.9.8 RAM Timing

There are  four sets of six registers each devoted to the control of DRAM timing.  The 
sets are at $0300 for single-beat reads, $0400 for single-beat writes, $0500 for burst reads, and 
$0600 for burst writes.  Each RAM timing group consists of five waveform registers and a 
counter.  The cycle counter determines the total number of clocks used for the DRAM cycle.  The 
waveform registers drive RAS*, address MUX, CAS*, output-enable, and latch control based on 
this cycle count.
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6.9.9 Interrupt Control

The interrupt control register is a special register, mapped according the A3000 
conventions.  This register is located at $00DFB09A, which is a shadow of the Paula interrupt 
control register on older Amiga systems.  This register is logically mapped as a sixteen bit 
register, matching the original Amiga chip register conventions.  This mapping allows faster 
interrupt disables to occur on modern Amiga systems, while maintaining hardware compatibility 
with older Amigas that must go through the Amiga chips for interrupt control.  A one here, the 
power-up state, disables interrupts to the host CPU, a zero here enables interrupts to the host 
CPU.  Most host implementations need external synchronization of the interrupt request lines as 
well as the enable control.

6.10 Memory Mapping

The RACE chip has pretty simple memory mapping rules.  The DRAM is of course 
mapped according to the DRAM base register.  The ROM is located at $03C00000-$03CFFFFF, 
with shadows at $00E00000-$00E7FFFF and $00F80000-$00FFFFFF.  The RACE chip itself 
lives at $00DA0000-$00DAFFFF.

Figure 6-7: The Interrupt Disable Register
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Chapter 7
The AMI Bus

The Acutiator Modular Interconnect, or AMI bus, as briefly mentioned in preceeding 
chapters, is the bus interconnect used between Acutiator chips and modules.  This bus is designed 
to address a number of important points:

• Compact bus size, important for system chip interconnects.  Acutiator system 
gate arrays put a premium on pin count, so the AMI bus needs to keep pin 
counts down to a minimum.

• Easy processor interface.  Ideally, a handful of low cost PAL and TTL devices 
should allow the basic 68030 or 68040 bus conversions.

• Processor neutrality.  Without making the standard processor interface too 
complex, the bus needs to support a variety of possible processors without 
undue interface complexity, especially for low cost processors.

• High speed.  The bus must maintain speeds necessary for nearly any 
motherboard.  It  must address interconnects with more speed and less cost 
overhead than an expansion bus at the loss of some generality.

The AMI bus is a multiplexed bus, based somewhat on Motorola family processor 
protocols.  It is a fully synchronous bus, with a clock rate between 25MHz and 50MHz.  There 
are two or three clocks, an Address/Data bus, and a Master/Slave control bus associated with the 
AMI bus.  Two reset signals generally go along with the bus as well, but they are not a required 
part for all connections.  

The main use of the AMI bus is for chip to chip interconnects. Secondary use is for 
intermodule interconnect, which in some cases amounts to the same thing.  Toward this latter 
end, a connector is defined as a standard physical carrier for the AMI bus signals.  The modular 
interconnect version of the AMI bus comes with some additional signals used for module 
configuration, I/O generation, and other useful functions.  AMI bus cards are designed to be low-
cost feature modules for a base Acutiator system, and this design is one way costs are kept down.

7.1 Component Signals

The AMI bus is a multiplexed 32-bit bus with support for 64-bit transfers.  It is a 
synchronous bus based on a clock running between 25MHz and 50MHz†.  The bus consists of 
three main signal groups.  The clock group defines two or three clocks that control the other two 
groups.  The A/D group defines a thirty-two wire address/data bus.   Finally, the M/S group 
defines an eleven wire master/slave control bus.

†The clock rate is not a fixed value.  We certainly need 25MHz-33MHz operation for any reasonably modern system 
performance.  Looking forward, it would make sense to extend this to 40MHz-50MHz.  Unlike previous designs, this will 
certainly require speed-graded parts for faster systems, possibly even using different gate array technologies.
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In addition to these main signals, some implementations will provide support signals for system 
reset, interrupt control, and bus arbitration along side the main AMI bus groups.  These are often 
more system dependent than the core AMI signals.

7.1.1 The Clock Group

There are three clocks defined for the clock group.  All clocks are based on a basis clock 
rate between 25MHz and 50MHz.

BCLK The primary AMI bus clock.  This clock runs at the basis clock rate, 25MHz to 
50MHz, depending on system implementation.  It is expected that all Acutiator 
chip designs will logically be able to adapt to any clock rate, though current 
technology may limit the high speed operation some.

DCLK An optional double-speed clock.  This may be provided for critical motherboard 
resources, though it is highly unlikely that such a signal would be provided at an 
AMI bus option slot.

Ø This clock determines what is carried by the A/D and M/S signal groups on the 
AMI bus.  A cycle starts when Ø is low, during which address and bus master 
controls are driven onto the bus.  When Ø is high, data is driven by either the 
master or slave (depending on data direction), and the responding bus slave will 
drive slave controls onto the bus.  The bus idles when the Ø strobe is high but the 
slave has removed itself from the bus.  The logical mapping of these signals is as 
follows:

 AMI Bus Cycle Phase
Ø0                                 Ø1          

A31-A0 D31-D0

S1 DTd*
S0 DTp*
Sw CI*
BT* BI*
R/W MI*
LK* SR*
T1 RT*
T0 ET*
M2 EM2

M1 EM1

M0 EM0

7.1.2 The Phase Ø0 States

The Ø0 signals are the first to be asserted on the AMI bus.  All transactions begin with Ø0, 
and the bus is basically parked in the Ø1 phase in-between cycles.  Signals are driven by the 
master and sampled by the slave on the rising edge of the BCLK.  
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A31-A0 The 32-bit address bus.

S1, S0, SW The size of the transfer is indicated by these sizing strobes.  All 64-bit transfers on the 
AMI bus are of course pseudo-64-bit transfers.  Note that the burst enable strobe must 
be asserted to run a burst mode transfer.

S1         S0        SW                          Meaning                               
 0  0  X Word (32-bits)
 0  1  X Byte (8-bits)
 1  0  X Half-Word (16-bits)
 1  1  0 Word (32-bits, often burst)
 1  1  1 Double-Word (64-bits)

BT* This strobe, burst  transfer request, indicates the current master wants a burst 
cycle.  If a master can't respond to slave burst inhibit, it must use an MMU to 
prevent burst cycles in areas that cannot support burst transfers. Bus slaves that 
can't support  burst won't burst and will ignore cycles after their first.  If a  master 
can't inhibit bursting, it will need to monitor SR* and generate fake termination 
for the remaining burst transfers.

R/W This signal indicates the direction of a transfer across the AMI bus.  If high, data 
flows from slave to master, if low, data flows from master to slave.

LK* This signal indicates that the current cycle is locked by the master.  The bus 
arbiter will wait this line is negated during Ø0 before changing bus masters.  This 
is designed for managing shared memory resources in a multiprocessor system, 
not as a way to hog the bus.

T1, T0 These are the cycle type indicator.  They describe the type of cycle being run by 
the current bus master.  Most slaves respond only to normal transfers, and 
uncachable bursts if they support burst transfers.  They respond to special address 
spaces only if they contain hardware related to the special meaning of such 
spaces.  The type encodings are:

T1         T0        Meaning                                         
 0  0 Normal transfer
 0  1 Uncachable burst

  1  0 Coprocessor override cycle
 1  1 CPU special address space

M2-M0 These are the cycle type modifier codes.  They further qualify the transfer 
indicated by the transfer type.  Like the transfer modifiers, many of these may be 
CPU dependent.  The AMI bus supports some standard meanings for normal 
transfers and uncachable burst transfers.  Other meanings depend on the special 
function they indicate.  Most slaves of a memory nature respond to User, MMU, 
Cache, and Supervisor accesses.  Most slaves of an I/O, register, or control nature 
respond only to Supervisor Data accesses unless otherwise required (usually for 
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compatibility), in which case they respond to User or Supervisor Data cycles.  
Coprocessor override cycles encode the coprocessor number on these lines.  Basic 
encodings are:

M2    M1    M0             Meaning                                     
 0  0  0 Data cache push
 0  0  1 User mode data access
 0  1  0 User mode instruction access
 0  1  1 MMU data table search 
 1  0  0 MMU instruction table search
 1  0  1 Supervisor mode data access
 1  1  0 Supervisor mode code access
 1  1  1 Reserved

7.1.3 The Phase Ø1 States

The Ø1 signals are asserted on the AMI bus for the remainder of a bus cycle.  The cycle 
may burst transfer four 32-bit words in 32-bit mode or eight 32-bit words in 64-bit mode.  Bursts 
can be inhibited but not intrrupted, except when an error occurs.  The signals are described 
below:

D31-D0 The 32-bit data bus.  The state of the Ø0 R/W strobe determines whether master or 
slave drive this during the remainder of the cycle.

DTd* This is the double data termination strobe.  During 64-bit mode transfers, this is 
asserted by the responding slave to indicate that a D64-D32 transfer is 
acknowledged.  During bursts or pseudo-64-bit cycles, this word is transferred 
first.  For other cycles, only one word is transferred and both acknowledges are 
asserted.  True 64-bit systems use this strobe to latch the first word in either kind 
of pseudo-64-bit transfer.

DTp* This is the primary data termination strobe.  This acknowledges all normal 
transfers.  During 64-bit bursts or pseudo-64-bit transfers, this strobe indicates 
D31-D0 has been transferred.  This mechanism allows DTp* to be the final transfer 
acknowledge indicator for all cycles. 

CI* This is the cache inhibit strobe.  This is asserted by a slave to inhibit caching of 
the transfer.  Uncacheable transfers can only be bursts if an uncachable burst 
transfer is specifically called for.  If a bus master can't respond to cache inhibit, it 
must make sure caching of uncachable resources is inhibited via MMU or other 
master-specific mechanism for all non-cacheable slaves.

BI* This is the burst inhibit strobe.  This is asserted by a slave to inhibit bursting of the 
transfer.  If a bus master cannot respond to the burst inhibit strobe, it must insure 
that bursting is inhibited via MMU or some other master-specific mechanism for 
all non-burstable slaves.
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MI* This is the memory inhibit strobe.  This is actually monitored by all slaves.  Its 
driven by a monitoring master, not the normal master or slave.  Asserting this 
prevents the responding slave from actually responding.  If it's negated before the 
end of the cycle, the slave then responds as normal.

RT* This is the retry termination strobe.  A slave or pending bus master  asserts this to 
cause the current cycle to terminate and retry.  Usually, the system controller can 
generate this for a pending master, based on a bus access timout setting.  All 
masters must do something reasonable when a retry is signalled. In conjunction 
with the bus arbiter this may generate a relinquish and retry cycle.

ET* This is the error termination  strobe.  It is asserted by  a bus slave to indicate that 
some kind of problem with a transfer has occurred.  This generally results in some 
kind of exception in the current master, and most of the time the host processor 
needs to intervene and properly process the error. The type of error is qualified by 
the EMN code.

EM2-EM0 These lines define the error modifier  code.  This code is asserted by a slave to 
indicate the type of error that has taken place.  This will set the value of the error 
register in the Acutiator System controller chip, so that the host processor will 
have some idea about what kind of failure took place.  For coproxessor override 
cycles, the override command is given on these lines.  The error codes are:

EM2     EM1    EM0           Meaning                                              
0   0   0 Module-generated AMI bus error
0   0   1 Illegal access mode
0   1   0 AMI bus timeout

 0   1   1 Memory parity error
1   0   0 Reserved
1   0   1 PIC collision
1   1   0 PIC-generated expansion bus error
1   1   1 Unqualified AMI bus error

7.2 Bus Timing

The AMI bus timing is kept as simple and straight forward as possible.  There are really 
just two sets of setup and hold times.  The first set defines the time during which a signal can be 
driving the bus, with respect to the system clocks.  The second set determines the time during 
which signals must be valid, with respect to the system clocks.  The basic AMI bus cycle is 
shown in Figure 7-1.

AMI bus timing requirements vary by clock rate.  While every system may not function at 
50MHz, it is expected that most chips will support 50MHz clocks even if they don't function 
without wait-states there.  The exceptions are for motherboard-based parts which are constrained 
to a speed-reated motherboard; these may be totally nonfunctional at higher clock rates.  The 
following table illustrates the various parameters at the supported clock rates:
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No.      Name                                        25MHz      33MHz      40MHz      50MHz
  1 BCLK  to signal on   0 ns   0 ns   0 ns   0 ns
  2 Signal valid to BCLK   8 ns   6 ns   5 ns   4 ns
  3 BCLK  to signal invalid   8 ns   6 ns   5 ns   4 ns
  4 Signal off to BCLK   0 ns   0 ns   0 ns   0 ns

7.3 Bus Transactions

The basic four-word transaction (32-bit burst) is shown in Figure 7-1.  There are three 
other basic types of cycles: single-word, double-word (pseudo-64-bit), and eight-word 
(pseudo=64-bit burst).  Each of these transaction types obeys the same basic timing shown for the 
four-word transaction.  All bus slaves are required to handle single-word transactions, though it's 
highly desirable that they support all of the transaction types, at least where appropriate.  Each of 
these types of cycles can take on wait-state variations, which allow both masters and slaves to 
insert extra cycles in order to guarantee proper operation at any clock speed.

7.3.1 Pseudo-64-bit Cycles

A detail of the pseudo-64-bit cycle is show in Figure 7-2.  This is basically a double-
length 32-bit transaction.  Word transactions in pseudo-64-bit mode are actually two-word burst 
transaction, while bursts are actually eight-word 32-bit bursts.  The main difference, other than 
the length, between 32-bit cycles and pseudo-64-bit cycles, is that both termination strobes are 
used during 64-bit transactions.  This is designed to make it easy for a 64-bit bus master to easily 
handle the 32 to 64 bit funneling necessary for AMI bus access.  In both 32-bit and 64-bit cycles, 
the DTp* strobe is the final cycle termination strobe.  These cycle termination strobes are shown 
as separte signals in the following diagrams, but are of course actually part of the M/S signal 
group.

Figure 7-1: Basic AMI Bus Cycle
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7.3.2 Wait States

The AMI bus provides a mechanism by which both masters and slaves may add wait 
states to a cycle.  There are various reasons one might want to add wait states.  For masters, it 
may be that the  higher BCLK speeds do not allow enough buffer off time to successfully turn all 
drivers off at the natural end of Ø0.  In such a case, the master will simply keep Ø low for 
additional clocks, leaving extra time for buffer activity.  A master may also extend Ø0 during 
write cycles if it will have trouble generating data fast enough to meet the start of Ø1.

During Ø1, slaves as well have the option of adding wait states.  During read cycles, the 
responding slave will need to add wait states until the data can be properly driven onto the bus.  
This can take a considerable number of states for some operations, expecially I/O functions.  The 
A/D group and the M/S group will be ignored during Ø1 until the slave drives one of the 
ternination lines of the M/S group, usually DTp* or DTd*.  For write cycles, the slave should 
latch data internally as soon as possible, but if this isn't possible on the first cycle of Ø1, 
additional cycles are added until a ternination line is driven.  AMI bus wait states of both kinds 
are shown in Figure 7-3. 

7.4 Coprocessor Override Cycles

The AMI bus supports a simple coprocessor interface.  AMI bus coprocessors access 
AMI bus resident memory just like any other bus master, using the locking facility to gain access 
to the bus for any sort of semaphores, etc. that are used for coprocessor communications.  For 
various extra services between the AMI bus master and a coprocessor, the coprocessor override 
cycle was created.  This cycle time allows certain commands to be sent on the bus to 

Figure 7-2: Pseudo 64-Bit Cycles
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coprocessors as a normal AMI bus cycle.  This cycle uses a special encoding of the T1-T0 lines, 
as described, along with the M2-M0 encoding the coprocessor number and the EM2-EM0 lines 
encoding the specific type of override function.  Note that a general broadcast to all coprocessors 
can also be sent.

Coprocessor devices themselves can have private memory and other private resources not 
normally mapped into the AMI bus address space.  The first coprocessor override function, level 
0, causes the addressed coprocessor device to relinquish its private bus and allow the AMI bus 
master access to that bus.  There must be some facility on the coprocessor device, of course, to 
allow the AMI bus access to the coprocessor's memory.

7.5 The AMI Bus Physical Connector

While the AMI bus is designed mainly as a simple and high-speed modular interconnect 
means, all modules in an Acutiator system are not necessarily located on the motherboard.  
Therefore, some means for adding various modules must be provided.  The AMI bus slot 
definition is that means.

7.5.1 General Support Signals

To act as a practical and flexible modular interconnect, the AMI bus slot definition 
includes some signals not generally considered a required part of the AMI bus.  These additional 
signals are as follows:

BFRST* This is the full-system reset.  This signal is asserted onto the bus to indicate a full 
reset or power-up reset.

Figure 7-3: Wait States
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CRST* This is the CPU reset.  This is asserted to reset the I/O system but not CPU-
related elements of the system.

CNT The clock for the SSPB bus.  SSPB is used on the AMI bus for simple 
configuration and other functions.

SP The data port for the SSPB bus.

SAD* The address strobe for the SSPB bus.  

ID2-ID0 The slot ID code, used to allow a card to claim bussed slot-specific resources.

MP* This is the Module Present indicator.  System logic may monitor this signal to 
determine if a module has been installed in any particular system slot.

7.5.2 Bus Arbitration Signals

Since the AMI bus is a multi-mastered bus, the AMI bus connector needs to support a 
handful of arbitration signals.

BR* This is a slot-specific bus grant.  Actual grant lines are encoded by slot 
number and routed to their respective slots.

BG2-BG0 The bus grant generated by requests to the motherboard controller.  The 
potential master compares its slot ID to the grant code to determine if it gets 
the grant.

BB* Bus busy strobe.  This line is driven by a bus master or, depending on setup, 
the system controller, while some device is on the bus.

7.5.3 Coprocessor Support Signals

The AMI bus provides serialized I/O registers for simple coprocessor communitations.  
Additionally, it permits a coprocessor card to take over primary booting of the system from the 
Host processor.

CRC Coprocessor Register clock.  This line clocks the serialized coprocessor register 
data.

CLD* Coprocessor Register load.  This line loads data to or from a coprocessor control 
register.

CWR This is the slot-specific Coprocessor Write data line, which is converted by card 
hardware to an 8-bit output port.

CRD This its the slot-specific Coprocessor Read data line, which is converted by card 
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hardware to an 8-bit input port.

CBOOT* This line is driven by a card to cause primary system booting to come from it, rather 
than from the Processor Slot Device.

7.5.4 Test Port Signals

Acutiator chips and many other modern chips support the JTAG boundary scan protocol 
(IEEE P1149.1), which permits detailed in-circuit test and troubleshooting.  To allow modules to 
be part of the JTAG scan chain, these signals are brought out on the AMI bus.

TRST* JTAG (IEEE P1149.1) test port reset control.

TMS JTAG (IEEE P1149.1) test port mode select.

TCK JTAG (IEEE P1149.1) test port clock.

TDI JTAG (IEEE P1149.1) data input.  For cards with no JTAG port, TDI is routed 
directly to TDO (empty slots achieve this via motherboard logic).  Cards with a 
JTAG test port will describe their scan chain in the configuration ROM.

TDO JTAG (IEEE P1149.1) data output.

7.5.5 System I/O Signals

To aid in the support of low cost AMI bus I/O modules, the AMI bus will generarally be 
brought out with the System I/O bus available too.  Extra memory and device selects are 
available for each slot, keyed to the slot ID code just as many other resources are.  The system 
I/O group also supports a variety of interrupt signals, as follows:

C28M The I/O Bus Clock.  Synchronous I/O transactions use this basis clock.

PA5-PA0 Peripheral addresses.

PD7-PD0 Peripheral data.  There are a variety of 8 to 32 bit funneling options available for 
the actual transfers between this bus and the AMI bus.

E The 6502/6800 protocol clock.

R/W This is either a read/write strobe or a read enable strobe, depending on the selected 
mode of the device.

DS* This is either a data valid strobe or a write enable strobe, depending on the 
selected mode of the device.

PCS4-PCS0 These are the peripheral select codes.  For AMI bus slots, an I/O select is available 
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with PCS4 and PCS3 low, while a memory select is available with PCS4 low and 
PCS3 high, based on a slot ID match.  

PDTACK* This is an asynchronous data acknowledge for self-timed peripherals.

PDL* This is the lower data word strobe for 16-bit transfers on the 8-bit bus.

7.5.6 The AMI Bus Slot Pinout

The following is a suggested pinout for the AMI bus physical connector.  The 
recommended connector is a 112 pin, 50mil one piece edge connector.  The signal arrangement is 
yet to be defined.
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Chapter 8
An Example System

This document proports to describe a system architecture, not a specific system.  As an 
architecture, the Acutiator system can in theory describe any number of possible physical 
implementations.  However, just as we described our views on chip implementations of the 
Acutiator architecture, this chapter discusses a system implementation.

8.1 The Highly Modular System Concept

 The proposed basic Acutiator system design is what I'd term a Planned Highly Modular 
system architecture.  The Highly Modular aspect is obvious; the motherboard system allows a 
great number of system details to be supplied on modular cards, rather than fixed into the 
motherboard design.  A good portion of this capability comes from the way the Acutiator system 
is partitioned.  The “planned” aspect is based on the idea, again, that the Acutiator system was 
designed from the ground up to exist as a series of modules.  We'll include a short piece of 
history on modular systems that may help clarify this in a bit.  That's an optional bit, you don't 
have to read it.  We'd just like to make the point that, while modular systems seem to have 
become all the rage over the last few years, most of them are modular simply because a 
marketing department somewhere has decided that they should be modular.  Amiga systems have 
been moving toward the goal of high modularity for some time now, for some very good reasons.  
The only thing that has held them back has been reluctance on the part of the product planners to 
go to highly modular systems.  We hope this will change with realized Acutiator systems.

8.1.1 A Brief History of Modularity † 

To some extent, the personal computer started out as a modular system.  The orginal ur-
PC was essentially a passive S-100 backplane into which the systems integrator would plug CPU, 
memory, and I/O boards in an effort to create a full fledged computer system.  It was the 
“personalization” of the microcomputer in the mid-70s by Apple, Commodore, and Tandy that 
first gave you systems that were, to some degree or another, fixed function systems.  Even at that, 
it was the expansion backplane in the Apple II, and its logical successor, the IBM PC, that 
brought forth truely successful and long lived computer systems.  The expansion backplane in 
these machines was just another form of modularity.  These backplanes eventually became suited 
only for low performance I/O, but they were, as much as anything, the reasons for the success of 
these systems.  It has been a long term goal of the Amiga systems groups, both the originals in 
Los Gatos and the current in West Chester, to support and enhance this kind of capability in 
Amiga computers.

† As my observation, this section is obviously opionion, not hard fact.  As someone who's been watching the microcomputer 

industry just about as long as there has been a microcomputer industry, I hope it will be considered by the reader as an accurate 
observation. 
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There are a number of strong arguments for modularity.  The need for an I/O backplane is 
an obvious one; no single base computer system can be all things to all people.  Early systems 
required the I/O backplane to provide nearly all I/O; disk, ports, video, etc.  Even while these 
items migrate to the system motherboard, higher performance version of the same become 
available for the I/O backplane, while new uses for this backplane are created every year.  In the 
original Amiga 1000, the backplane was an add-on, and achieved limited success.  When built 
into the Amiga 2000, a real platform system was created.

The Amiga 2000 actually took the modular concept one step further.  It was obvious at 
the time of the A2000's design that the motherboard's 68000 would not be adequate for all the 
A2000's uses.  Yet at the time, a 68020 processor was considered too expensive for the base 
A2000 system.  The end result was the creation of the A2000 coprocessor slot, which made 
possible enhanced processors on relatively simple plug-in cards.  The scope of the A2000 system 
didn't make this feature extremely elegant, but it made it very practical, and spawned a whole 
market in A2000 enhancement cards, as well as the A2500 machines bundled by Commodore 
itself.  The A2500 development also made clear that such a modular design can drastically 
decrease the time to market of enhanced systems, especially when only one subsystem (CPU, 
Video, etc.) is being improved.

This concept was improved upon in the Amiga 3000.  The coprocessor slot of the Amiga 
3000 was designed with full forethough and consideration for the needs of an add on processor.  
Not only could an external CPU run it that slot, it could actively source the A3000 system clocks 
and efficiently share the A3000 local bus with the on-board 68030.  It is also a trivial matter to 
eliminate the A3000's motherboard processors altogether and build A3000 class machines with 
the processor always on a plug in card, as ultimately done in the A3000T/040. 

Modularity on Amiga systems reaches its logical conclusion at the Acutiator architecture.  
Acutiator, in as much as its possible without repartitioning the Amiga chip sets, makes every 
main component of an Amiga computer a modular element.  It defines a standard interconnect for 
motherboard resources as well as expansion resources†.  The Acutiator chips and both Local and 
System bus definitions make it much easier to connect a variety of processors with much less 
glue logic than required in previous Amiga systems.  Traditionally motherboard related facilities 
can easily go on cards, and the number and type of such resources are very flexibly programmed, 
rather than being fixed in hardware as they were on previous systems.   Finally, the motherboard 
itself is a module with respect to a finished system -- the same motherboard is used for all 
Acutiator configurations: pizza-box, small or large desktop, and tower systems alike. 

8.1.2 Modularity and the Amiga

Modularity is not only a good idea, it's perhaps crucial to the success of anything but the 
cheapest low end Amiga system.  Commodore is much smaller than a good portion of its 
competition, and willing to spend even less as a percentage of its size on new work than the 

† This concept was first put forth here in a brief paper, “Toward the A4000”, by Dave Haynie, written up in 1990 shortly after the 
A3000 was finished.  Needless to say, it has yet to be incorporated in an Amiga, though Sun and some in the PC Clone industry 

are using the same basic concepts in their latest systems (eg, Sun's M-Bus, Intel's PCI, etc.).
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average computer company.  Therefore, it depends much more on building platforms rather than 
one-use systems.  And it shows; since the Amiga 1000 was introduced in 1985, Commodore has 
released only three fundamentally new high-end systems; Amiga 2000,  3000, and 4000.  And 
these three system represent only two generations of system chips.  Apple released more new 
systems than that in 1992 alone.  Using the modular approach, however, the Amiga 2000 though 
4000 became many different models.

However, neither system supports the creation of a highly modular motherboard, which is 
required to support both a broader range of Amiga computer products and the new Amiga 
technologies that are forthcoming.  One Acutiator motherboard could support low profile systems 
with 68020, 68030, 68040, or 68060 processor modules, with or without multimedia (DSP) or 
high performance (FPU, DMA driven SCSI) options.  Video option modules could cover ECS, 
“AA”, “AA+”, and both low and high end “AAA” subsystems.  The same motherboard could be 
used for large desktop and/or tower machines.  Even when one motherboard won't cover a whole 
line, modularization makes each new motherboard less work to design, build, and verify, and it 
can take advantage of the whole family of existing modules for CPU, video, expansion, etc.

This is good for Commodore, since any given addition to the matrix is an order of 
magnitude simpler and faster to implement than a whole new motherboard.   It also makes it very 
easy to phase in cost reductions and improvements to one subsystem, since you replace only that 
subsystem, not the whole computer.  A highly modular Amiga 3000† would have superceeded 
both today's Amiga 3000, the A3000T, and the A4000 and any possible “T” model to follow. The 
A4000 replacement “AA” implementations would have simply been a new video module.

This is good for the customer, since no one feels left behind when new technology is 
introduced.  Even if separate upgrade modules ultimately cost as much as a complete new 
generation system, there's something psychologically comfortable to an upgrade of an existing 
system vs. a system replacement.

8.2 A Highly Modular Motherboard

A block diagram of an example highly modular Acutiator system is shown in Figure 8-1.  
The idea of a modular motherboard is that the main board itself strives to contain only those 
features that are useful for all systems or low cost enough to be redundant in some 
configurations.  Technically, the motherboard could be a passive backplane, containing nothing 
but slots for I/O, processor, and memory.  However, at a certain point, further modularization 
becomes counterproductive and expensive.  Every system needs the ability to hook up to some 
fast memory and some basic I/O resources like keyboard, mouse, and floppy disk.  While hard 
disk and networking at the very low end of Acutiator systems may not be critical, systems like 
IDE and RS-485, respectively, cost so little it's sensible not to omit these basics from the 
motherboard.  Higher performance SCSI or Ethernet are available as add-ins, at least on the 
lower-cost systems.  As always, what's modular in one implementation could easily become 
motherboard resident in a different implemetation.

† A modular video subsystem was originally proposed for the Amiga 3000, though we never considered a highly modular system 
at the time.
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The key to the system's modularization are the available logical module slots.  This 
suggested Acutiator defines four main kinds of module slots.  These are not necessarily 
physically distinct in the actual system implementation, but they're logically defined, intended to 
be for the most part mixed as appropriate to the given motherboard.  Module slots are somewhere 
between expansion slots and the old coprocessor slot in terms of reuseability.  The expansion bus 
is expected to be supported, functionally unchanged, on any modular system.  The coprocessor 
slot was a system-defined slot, subject to change for each new system implementation.   
Acutiator module slots are much more tightly coupled to system implementation than expansion 
slots, but at the very least designed to exist across multiple motherboards of the same generation 
if not across generations.

    The primary module is the host processor module, which in nearly all cases will go in 
the system's single host slot.  Normal modules have an AMI bus connector, while the host 
module adds the DRAM bus slot in-line with the AMI bus connector.  The host module provides 
an  AMI bus interface, a DRAM controller, and a system ROM.  The card main contain other I/O 
or coprocessing devices; a processor module designed for Multimedia would contain a DSP3210 

Figure 8-1: An Example Highly Modular System
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here.  Typically, the interface logic for a CPU on this modules is minimal, especially if the RACE 
chip as defined in Chapter 6 is used.

For the addition of modules other than that of the host processor, the motherboard 
contains several AMI bus slots.  Each of these slots provides the basic Acutiator Modular 
Interconnect Bus, the SSPB bus, and a DMA channel.   A coprocessor interface channel is 
generally also provided, to help manage coprocesor devices like DSP or extra CPUs.  Acutiator 
system chips are happy in such slots, and these serve as the basis for the rest of any complete 
Acutiator system.  They can also be used for general purpose high speed expansion, including the 
addition of coprocessor devices and fast RAM.  Most Finally, they may work in conjunction with 
the two other types of logical slots fo provide full featured I/O modularity.

There are two kinds of logical I/O slots.  The first of these is the SysI/O slot.  This is the 
basic support mechanism providing this Acutiator system with the capability to modularize 
things like expansion, port control, and video, while still allowing these things to work as they 
usually do in Amiga systems.  So data channels for the motherboard supported RS-232 and 
floppy disk are available on this slot.  Video data signals, both analog and digital, video clocks 
and other video related signals are on this connector, allowing a modular video card to drive a 
modular video expansion slot located on a totally different card.  This is in some ways a “glue” 
slot.  In the final design, it's possible that signals needed on the motherboard exist as a slot, while 
the rest of it takes the form of card-to-card cabling.  

The final slot is the AuxI/O slot, designed for simple I/O expansion.  This kind of slot 
contains the Acutiator peripheral bus management signals, some interrupts, and a both I/O and 
memory selects to be used by modules.  Simple I/O ports, chip-selected  peripherals, etc. can 
easily be located on modules this way.  The SSPB serial ROM would be required to inform the 
OS of any modular device the system ROM doesn't already understand.  This permits limited I/O 
devices to be added for very low cost, as if they were on the motherboard rather than in a general 
purpose expansion slot.

8.3 Some Processor Modules

There is a considerable bit of flexibility in the kind of host processor module that can be 
added to this example Acutiator system board.   Figure 8-2 shows two possibilities.  The first is 
essentially the lowest cost and lowest performance option, just a low-end processor and interface 
logic.  The second is a multiprocessor host module, this one intended for high performance 
multimedia operations (several application optimized modules such as this could be offered).  

On the low end of things is the basic processor module.  Such modules contain only an 
MC680x0 type CPU and a small amount of processor-dependent logic to interface with the 
Acutiator Local Bus. Shown is an example MC68020 basic module.  The host system ROM will 
be able to detect the MC680x0 processor type, so no system or SSPB ROM is necessary on this 
card.  The system software configures all the programmable timing in the system based on the 
asynchronous 68020 bus (eg, it's essentially just advanced a state).  A PAL is used to convert 
MC68020 control signals into their Acutiator bus equivalents in the few areas where they are not 
equivalents.  As with all Acutiator host processor modules, this one supplies the two system bus 
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clocks, BCLK and DCLK.  While the Acutiator clocks are defined to be between 25MHz and 
50MHz,  not all systems may actually run this fast.  It may still make sense for some systems to 
run at double the BCLK rate while on the module.

The second block diagram shows a more sophisticated processor module, designed in this 
case for Multimedia systems.  This one contains an MC68040 as the host and an AT&T 
DSP3210 for signal processing.  The DSP supports a high speed serial bus which may contain a 
variety of audio interface devices.  The RACE chip provides the glue between the MC68040 bus 
and the AMI bus. The DSP3210 will need a PAL or two to complete its control interface, though 
the RACE chip's bus arbiter should allow a direct arbiter connect.  The DSP3210 will also need 
some coprocessor control functions, such as interrupt generation and management, and generally, 
some kind of I/O devices to talk to.  Finally, the card contains a ROM.

8.4 The Amiga Module

The next module in the series is the Amiga module.  This is essentially the subsystem 
defined by any given generation of Amiga custom chips.  Any such module will of course 
provide the default system video display, audio, and Chip memory.  It is also expected to provide 
data streams for floppy disk, RS-232, mouse, and the analog  lines also defined by the mouse 
ports.  

The Amiga module will have access to three classes of in-line slots; the AMI Bus slot, the 
AuxI/O Slot, and the SysI/O Slot.  In most implementations, the AuxI/O slot will not be 
necessary, though this could be used to build a compatible Amiga Module with off the shelf PC 
Clone parts like VGA chips and standard floppy controllers (perhaps a low cost UNIX-only 
Acutiator system would take this approach).  The SysI/O slot is used to connect the various 

Figure 8-2: Example Processor Modules, Simple and Multimedia
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Amiga data streams (disk, mouse, video, etc) to their appropriate paths.  As mentioned, these 
may actually go though the motherboard via a connector, or instead over cable to the expansion 
module or other such connection point.

The main point of the Acutiator Architecture is to permit the building of low cost modular 
Amigas from the mid to high end of the performance scale.  In taking the modular approach, the 
only Acutiator chip that is absolutely necessary for the creation of an Acutiator system is the 
AMOS device.  However, to keep on the low cost track with Acutiator systems, the full 
complement of Acutiator chips is recommended.  

Toward this end, the simplest Amiga Module  is one based on the SAIL device.  A block 
diagram of this is illustrated in Figure 8-3, based on the “AAA” SAIL device and the AAA chip 
set.  In this design, the SAIL gate array provides a complete high performance and nearly glue-
free interface between the AMI Bus and the Amiga chips.  This is the lowest cost implementation 
of an “AAA” system possible without integrating the “AAA” system glue along with the Andrea 
chip.  This is also the fastest possible design, since the SAIL chip directly drives the Chip RAM 
bus, and can do so slmost about as fast as the A3000 runs Chip RAM.

Since one of the featured points of a modular system is the ability to quickly react to new 
subsystem architectures, it's a useful exercise to examine an Amiga Module built from off-the-

Figure 8-3: An Example “AAA” Amiga Module
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shelf parts.  While it might be possible to build a new SAIL device with every new Amiga chip 
generation, it's not at all certain that such an effort will be necessary or even possible; resources 
may be better spent elsewhere, depending on the specifics of the situation.  In other words, the 
modular architecture lends itself as much to the quick adaptation of new technologies as it does 
the creation of low cost systems.  In fact, it makes the prototyping and development of new 
technologies much more efficient than what's done today, in that it's necessary only to prototype 
the new subsystem, not an entire new machine.  So a prototype evaluation can be run over more 
units for less cost, and the prototype to production time is greatly lessened as a result.

We looked a little bit at a PAL and TTL implementation of an “AA” module for the 
Acutiator system.  Such a module would be just a little more complex than the AA3000 or 
possibly A4000 version of an “AA” system.  Typically, such a design would have somewhat 
lower performance than an integrated solution, and it would have a high cost.  It's certainly 
possible to build a PAL/TTL module for system development and later phase in an integrated 
one. Even a production system could be managed this way.

8.5 The Expansion Module

The Expansion Module is shown in Figure 8-4.  The design is very simple, since the 
EPIC chip takes care of all System Bus to Expansion Bus conversion in both directions, 
buffering, bus sizing for Zorro II support, etc.  While this module is very simple, it's conceivable 
that with enough effort, an Expansion Module could be built based around the Fat Buster chip 
from the Amiga 3000.  It would require at least ten TTL buffer chips for bus buffering and 
bridging, a bus mapping PAL, and some bus control conversion logic.  While possible, it's not 
high efficient and not recommended.

The need for modular I/O expansion is not quite as obvious as the need for modularity in 
other subsystems.  Certainly it's possible that you could put other expansion protocols into an 
Acutiator rather than the Amiga's Zorro bus.  If the system were running the Apple Macintosh 

Figure 8-4: The Expansion Module
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OS, certainly a NuBus backplane could be substituted.  Similarly, with an EISA backplane and 
R4000 Host Module, you could turn the system into an Amiga-chip based ACE compatible 
computer.  However, all of that amounts to a heck of a lot of work that's never likely to be done.

In much more practical terms, the Expansion Module has a reason for being.  FIrst of all, 
in any low-profile Amiga, the expansion backplane is going to be on a daughtercard, to allow 
expansion cards to mount horizontally.  It doesn't make much sense to create a new and different 
kind of motherboard socket for this backplane if the standardized modular solts will serve the 
same purpose.  Making the expansion backplane modular in this manner also will allow a low-
end version of the system to ship with expansion as an add-on option.  While this could have 
been done on the Amiga 3000/A4000 class machines, most of the expansion costs were on the 
motherboard of that system in the first place.  Finally, the Expansion Module makes sense if you 
think fo the whole Highly Modular Amiga Motherboard as a module itself.  With the Expansion 
Module slots strategically located at the edge of the Motherboard, the same Motherboard can be 
used in a tower configuration.  A right angle connector would be used instead of the normal 
vertical connector, with a mating daughterboard right next to the Motherboard taking cards in a 
normal tower system style configuration.

8.6 The Coprocessor Module

The final module type is for expansion only, few if any Acutiator systems would go out 
with such a module in them, at least not right away.  A Coprocessor Module is a special case of 
the AMI bus module.  In fact, it's not necessarily a special case at all.  Coprocessor interface 
signals to aid the host/coprocessor communications exist on each open AMI bus slot.  One slot 
has the CBOOT* signal, which permits it to grab the AMI bus before the host can.  

This module has no single defined purpose; it can support multiple coprocessors, a high 
speed SCSI processor, extra memory, all kinds of things.  In that it's much less general than the 
Zorro III bus, and in the suggested implementation, much smaller, we wouldn't recommed this 
slot be used for anything that could reasonably exist on an expansion card.   Commodore-Amiga 
could, of course, claim this slot as their own for future unnamed expansion and force all third 
parties to use the general purpose expansion bus.  In keeping with the Acutiator philosophy, this 
doesn't just permit very fast expansion, it also permits very cheap expansion, because the 
Motherboard Controller device is generating chip selects on the AuxI/O bus.  

8.7 Physical Design Concepts

Until we get some physical design people involved, there can be no definitive statement 
about how a system like this would be mechanically configured.  We do, however, have some 
ideas on the subject.  To achieve a reasonable card size without building a giant motherboard 
(Acutiator Motherboards should be very small, as the example shown slightly smaller than full 
size in Figure 8-5), most implementations should be based on vertically mounted Module cards.  
However, we don't want to preclude the creation of low-profile systems like the A3000 or even 
two-slot machines like the A1000+ that was once proposed.  Therefore, the Module cards should 
be small; probably no taller than 5-6cm high, 20cm long (obviously the Expansion Module will 
be larger, to accomodate Zorro bus slots).  There's no requirement that the different types of 
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Figure 8-5: A Highly Modular Motherboard
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Modules all be the same size, but they will all fit within a specified maximum dimension to allow 
rational case designs.

The various bus connectors will be very high density connectors.  The “KEL from Hell” 
style connector of the Amiga 3000 won't suffiice, because it doesn't permit vertically mounted 
cards.  The high density IBM MicroChannel style edge connector is one candidate, since a one 
piece connector is generally cheaper and wastes less Module board space.  However, such a 
connector precludes the building of “pizza box” style computers.  It's very possible to build a 
single motherboard that would serve for pizza box, low profile desktop, and tower systems.  In 
the pizza box systems, you don't use the Expansion or Coprocessor Modules, and you orient the 
Host and Amiga Modules horizontally.  For the other systems, all modules are supported and are 
vertically oriented.  Many of the high density two-piece connectors offer the plug-in board half of 
the connector in both straight and right angle versions; such a connector would facilitate this 
level of flexibility. 
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