08/15/91

INTEGRATED CIRCUIT SPECIFICATION

for the

LISA DISPLAY CONTROLLER Commodore P/N 391227-01

Copyright 1990,1991 COMMODORE ELECTRONICS LTD.

Information contained herein is the unpublished, confidential and trade secret property of Commodore Business Machines, Inc. Use, reproduction or disclosure of this information without prior explicit written permission of Commodore is strictly prohibited.

Revisions:

08/15/91:	in section 3.3 revised input and tristate leakage specs, reflecting presence of TTL level shifter
08/02/91:	general overhaul of timing specs. Reversed pins 24&25 in pin descriptions (2.2)
07/26/91:	replaced missing pins in section 2.2, fixed 3.4.12,13 timing specs relating to MLD_
07/23/91:	added footnote to timing section, specifying video outputs, eliminated CCK driven Dx timings, fixed WIDE timing spec.
06/29/91:	added sheet behind cover which addresses changes to the current revision.
06/13/91:	corrected 3.4.12- 15(SCLK),3.4.20(WIDE),3.4.28(video)
06/07/91:	removed functional definition already included in AA spec, corrected desription of ECSENA
06/03/91:	SCLK,MLD ,WIDE now all spec'd for 2TTL/50pF
05/08/91:	modified MLD_,WIDB parametric specs.
05/03/91:	cleaned up parametric specs,clarified ECSENA
04/30/91:	revised description of LISAID
11/14/90:	moved FMODE to 1FC, added scan-doubling
08/29/90:	PINS 24 & 25 REVERSED IN PINOUT

List of changes to Ri:

- 1.) FMODE now resides at \$1FC not \$076 as before.
- 2.) Data bus drivers now disabled on D(15:0)
- 3.) internal data bus configuration logic changes state 1/2 bus cycle later(should be transparent to ATE)
- 4.) RDRAM bit moved to BPLCON2 from BPLCON3 (may have already been done to ROA ???)
- 5) Sprite scan-double mod: FMODE(15) (SSCAN2) when high causes SH10 bit compare of sprite position to be disabled, in other words a "don't care .
- 6.) BRDRBLNK logic fixed: BLANK=OLDCBD+BRDRBLNK*DSPN~
- 7.) Newtek fix hardwired end of blanking occurs 140nS earlier, at \$05D .
- 8.) OSPRMx bits are now used whenever attached sprites are active. Choice between OSPRMx and ESPRMx formerly depended on attached sprite data content data content.

1.1 GENERAL DESCRIPTION

This Specification describes the requirements for Lisa, a Display Controller Integrated Circuit (I.C.) . offering considerable advantages to our Amiga product line, both new features and higher performance.

The basic function of Lisa is to accept bitplane data and sprite data from chip ram, and serialize and prioritize them to provide a set of signals suitable for input to a video DAC. Lisa also provides mouse/joystick circuitry and genlock support.

New features for Lisa (as compared to ECS Denise) :

- 32 bit wide data bus supports input of 32-bit wide bitplane data and allows doubling of memory bandwidth. Additional doubling of bandwidth can be achieved by using Fast Page Mode Ram. The same bandwidth enhancements are available for sprites. Also the maximum number of bitplanes useable in all modes was increased to eight (8).
- The Color Palette has been expanded to 256 colors deep and 25 bits wide(8 RED,8 GREEN,8 BLUE,1 GENLOCK). This permits display of 256 simultaneous colors in all resolutions. A palette of 16,777,220 colors is available in all resolutions.
- 28Mhz clock input allows for cleaner definition of HIRES and SHRES pixels. ALICE's clock generator is synchronized by means of LISA's 14MHz and SCLK outputs. Genlock XCLK and XCLKEN* pins have been eliminated (external MUX is now required).
- A new register bit allows sprites to appear in the screen border regions.
- A bitplane mask field of 8 bits allows an address offset into the color palette. Two 4-bit mask fields do the same for odd and even sprites.
- In Dual Playfield modes, 2 4~bitplane playfields are now possible in all resolutions.
- Two extra high-order playfield scroll bits allow seamless scrolling of up to 64 bit wide bitplanes in all resolutions. Resolution of bitplane scroll, display window, and horizontal sprite position has been improved to 3Sns in all resolutions.
- A new 8 bitplane HAM mode has been created, 6 for colors and 2 for control bits. Both HAM modes are available in all resolutions (not just LORES as before).
- A RST input pin has been added, which resets all the bits contained in registers that were new for ECS or LISA: BPLCON3, BPLCON4, CLXCON2, DIWHIGH, FMODE.
- Hardware Scan Doubling support has been added(modified SPRxPOS SH10 bit definition).

LISA Chip Elements: 256 Color Registers 8 64-bit Bitplane Shift Registers Bitplane Priority and Control Registers Color Select Decoder Priority Control Logic 8 Sprite Serial Lines 8 64-bit Sprite Shift Registers (2 planes wide) 16 bit Serial Mouse/Joystick/Configuration Port Sprite Position Compare Logic Sprite Horizontal Control Registers Collision Detect Logic. Collision Control Register. Collision Storage Register. Buffer - Data Bus. Buffer - Register Address Decode. Full 25 Bit Digital Video Port

D6 IO 23 C D5 IO 24 H D4 IO 25 C D3 IO 26 S D2 IO 27 H D1 IO 28 Z D0 IO 29 H CAS_ I 30 N CCK I 31 H WIDE DO 32 H RGA8 I 33 N RGA7 I 34 H RGA6 I 35 H RGA5 I 36 H RGA4 I 37 H RGA3 I 38 H RGA2 I 39 O RGA1 I 40 O	72 71 70 69 68 67 66 65 64 63 4203
NAME TYPE PIN VSS G 22 S D6 IO 23 C D5 IO 24 F D4 IO 25 C D3 IO 26 S D2 IO 27 F D1 IO 28 Z D0 IO 27 F D1 IO 28 Z D0 IO 29 F CCK I 31 F WIDE DO 32 F RGA8 I 33 Y RGA6 I 35 F RGA5 I 36 F RGA4 I 37 F RGA3 I 38 F RGA2 I 39 C RGA1 I 40 C	4203
TYPE PIN G 22 22 IO 23 0 IO 24 F IO 24 F IO 25 0 IO 26 2 IO 27 F IO 28 2 IO 29 F I 30 N I 31 F DO 32 F I 34 F I 35 F I 36 F I 38 F I 39 O I 41 O	4203
YPE PIN P	4203
PIN 1 22 2 23 0 24 H 25 0 26 2 27 H 28 2 29 H 30 V 31 H 32 H 32 H 32 H 33 V 34 H 35 H 35 H 35 H 37 H 38 H 39 0 40 0	4203
22 22 22 22 22 22 22 22 22 22 22 22 22	4203
	4203
	4203
1E K O M M	203
20 TYP VC U VC VC VC VC VC VC VC VC VC VC VC VC VC	
22 PI3445678901234555555566666	
I NI GGGGGGG GGGG R R R R R R R R R R R R R	
AME 2800 4 56 7 7 2 1 2 3 4 5 5 6 5 5 6 0 D	
TYY JT V V V V V V V V V V V V V V V V V V V	
 PE	
N N I I I I I I I I I I I I I	
29 JAME 025 0225 0225 0221 0011 00120 0011 00120 00100000000	
334 332 31 YPE HOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOO	33 32

1.2 PIN CONFIGURATION

2.1 REGISTER MAP

register	addr	R/Wfunction
BPL1DAT 110 BPL2 DAT 112 BPL3DAT 114 BPL4 DAT 116 BPLSDAT 118 BPL6DAT 11A BPL7DAT 11C BPL8DAT 11E	W	Bit plane data parallel to serial conversion (16/32 bits) . These registers receive the DMA data fetched from RAM by the bitplane address pointers. They may also be written by either the copper or the CPU. They act as a 8 word parallel to serial buffer for up to 8 bitplanes. The parallel to serial conversion is triggered whenever BP1 is written, indicating the transmission of all bitplanes for the next 16/32/64 pixels. The MSB is output first and is therefore always on the left.
BPLCON0 100 BPLCON1 102 BPLCON2 104 BPLCON3 106 BPLCON4 10C	W W W W W	Bitplane control reg. (misc. bits) Bitplane control reg. (horiz scroll) Bitplane control reg. (video priority) Bitplane control reg. (new features) Bitplane control reg. (mask bits)

These 5 registers control the operation of of the bitplanes and various aspects of the display as explained below:

BIT#	BPLCON0	BPLCON1	BPLCON2	BPLCON3	BPLCON4
15	HIRES	PF2H7	Х	BANK2=0	BPLAM7=0
14	BPU2	PF2H6	ZDBPSEL2	BANK1=0	BPLAM6=0
13	BPU1	PF2H1	ZDBPSEL1	BANK0=0	BPLAM5=0
12	BPU0	PF2H0	ZDBPSEL0	PF2OF2=0	BPLAM4=0
11	HAM	PF1H7	ZDBPEN	PF2OF1=1	BPLAM3=0
10	DPF	PF1H6	ZDCTEN	PF2OF0=1	BPLAM2=0
09	COLOR	PF1H1	KILLEHB	LOCT=0	BPLAM1=0
08	GAUD	PF1H0	rd ram 0	Х	BPLAM0=0
07	У	PF2HS	SOGEN=0	SPRES1=0	ESPRM7=0
06	SHRES	PF2H4	PF2PRI	SPRES0=0	ESPRM6=0
OS	BYPASS=0	PF2H3	PF2P2	BRDRBLNK= () ESPRMS=0
04	BPU3=0	PF2H2	PF2P1	BRDNTRAN= () ESPRM4=1
03	У	PF1H5	pf2p0	х	OSPRM7=0
02	У	PF1H4	PF1P2	ZDCLKEN=0	OSPRM6=0
01	У	PF1H3	PF1P1	brdsprt=0	OSPRMS=0
00	ecsena=0	PF1H2	PF1P0	EXTBLKEN= () OSPRM4=1

x= don't care; but drive to 0 for upward compatibility' y= register bits contained in ALICE, not defined here. =0/=1 bit values initialized by RST_ pin going low

HIRES=High resolution mode (70nS pixel width)
BPUx=Bit plane use code 0000-1000 (NONE thru 8 inclusive)
HAM=Hold and Modify mode, now using either 6 or 8
 bitplanes. New mode is automatically invoked when BPU=1000.

DPF=Double playfield (PF1=odd bitplanes PF2=even bitplanes), now available in all resolutions. COLOR=enables Color Burst output signal GAUD=Genlock

audio enable. This level appears on the

ZD pin on Lisa during all blanking intervals, unless ZDCLK is set.

SHRES= Super-hi-res mode (35nS pixel width) BYPASS=bitplanes are scrolled and prioritized normally, but bypass color table and 8 bit wide data appear on R(7:0).

ECSENA = When low(default), the following bits in BPLCON3 are

disabled: BRDRBLNK, BRDNTRAN, ZDCLKEN, BRDSPRT, and EXTBLKEN. These S bits can always be set by writing to

BPLCON3, however there effects are inhibited until ECSENA goes high. This allows rapid context switching

- between pre-ECS viewports and new ones. PF2Hx= Playfield 2 horizontal scroll code, x= 7-0 PF1Hx= Playfield 1 horizontal scroll code, x= 7-0 where PFxH0=LSB=35nS= 1 SHRES pixel (bits have been renamed, old PFxH0 now PFxH1,etc.). Note that scroll range has been quadrupled to allow for wider (64 bits) bitplace bitplanes.
- ZDBPSELx= 3 bit field which selects which bitplane is to be used for ZD when ZDBPEN is set;000 selects BP1,111 selects BP8,etc.
- Selects BP8,etc.
 ZDBPEN= causes ZD pin to mirror bitplane selected by
 ZDBPSELx bits. This does not disable the ZD mode
 defined by ZDCTEN, but rather is "ored" with it.
 ZDCTEN= causes ZD pin to mirror bit #15 of the active
 entry in the high color table.
 KILLEHB= disables ExtraHalfBrite mode. If BPU=0110,HAM=0,
 DDE=0 and KILLEHD=0 then ExtraHalfBrite mode is
- DPF=0, and KILLEHB=0 then ExtraHalfBrite mode is
 - defined; this dictates that whenever BP6=1 the color selected by the other S bitplanes is halved in intensity.
- RDRAM= causes Color Table accesses to be a read instead of a write

SOGEN= causes SOG (sync on green) output pin to go high PF2PRI= gives Playfield 2 priority over Playfield 1. PF2Px= Playfield 2 priority code (with resp. to sprites) PF1Px= Playfield 1 priority code (with resp. to sprites) A priority of 0 places the playfield in front of all the sprites; a priority of 4 places it behind them all.

BANKx= selects 1 of 8 Color Palette banks, x= 0-2 PF2OF2,1,0= determines playfield color table offset when Playfield 2 has priority in dual playfield mode:

PF	20	F2	Affected Playfield Address Bit								Offset
2	1	0	8	7	6	5	4	З	2	1	(dec)
0	0	0	-	Ι	Ι	Ι	Ι	1	١	1	none
0	0	1	-	-	-	-	Ι	-	1	-	2
0	1	0	-	-	-	-	Ι	1	-	-	4
0	1	1	-	-	-	-	1	-	-	-	8
1	0	0	-	-	-	1	-	_	-	Ι	16
1	0	1	-	-	1	-	-	-	-	-	32
1	1	0	-	1	-	-	-	—	-	-	64
1	1	1	1	_	_	-	_	_	_	_	128

- LOCT dictates that subsequent color palette values will be written to a second 12-bit color palette, constituting the RGB low-order bits. Writes to the normal high-order color palette write to the low-order color palette as well.
- SPRES1,0= determines resolution of all 8 sprites. ECS defaults are 140n5,140n5,70n5 for LORES,HIRES,and SHRES playfields, respectively .

SPRES1	SPRES0	SPRITE RESOLUTION
0	0	ECS defaults
0	1	LORES(140nS)
1	0	HIRES(70nS)
1	1	SHRES(35nS)

BRDRBLNK= "border area " is blackened instead of displaying color(0).

BRDNTRAN= "border area " is non-transparent (ZD pin is low when border is displayed)

ZDCLKEN= ZD pin outputs a 14MHZ clock whose falling edge

ZDCLKEN= ZD pin outputs a 14MHZ clock whose failing edge coincides with high-res(7MHZ) video data. This bit when set disables all other ZD pin functions. BRDRSPRT= enables sprites outside the display window. EXTBLKEN= causes Blank output to be programmable instead of reflecting internal fixed decodes. BPLAMx= 8 bit field is XOR'd with the 8 bit bitplane color address thereby altering the color address sent to the

address, thereby altering the color address sent to the

color table. ESPRMx= 4 bit field provides the 4 high order color table address bits for even sprites (SPRO, SPR2, SPR4, SPR6) (default=0001)

OSPRMx= 4 bit field provides the 4 high order color table address bits for odd sprites (SPR1, SPR3, SPRS, SPR7)

(default=0001)

W

CLXCON 098

Collision Control This register controls which Bitplanes are included (enabled) in collision detection, and their required state if included. It also controls the individual inclusion of odd numbered sprites in the collision detection, by logically OR-ing them with their corresponding even numbered sprite .

BIT#	FUNCTION	I DESCRIPTION
15	ENSP7	ENable Sprite 7 (ORed with Sprite 6)
14	ENSPS	ENable Sprite 5 (ORed with Sprite 4)
13	ensp3	ENable Sprite 3 (ORed with Sprite 2)
12	ENSP1	ENable Sprite 1 (ORed with Sprite 0)
11	ENBP6	ENable Bit Plane 6 (Match required for collision)
10	ENBPS	ENable Bit Plane 5 (Match required for collision)
09	ENBP4	ENable Bit Plane 4 (Match required for collision)
08	ENBP3	ENable Bit Plane 3 (Match required for collision)
07	ENBP2	ENable Bit Plane 2 (Match required for collision)
06	ENBP1	ENable Bit Plane 1 (Match required for collision)
05	MVBP6	Match Value for Bit Plane 6 collision
04	MVBP5	Match Value for Bit Plane 5 collision
03	MVBP4	Match Value for Bit Plane 4 collision
02	MVBP3	Match Value for Bit Plane 3 collision
01	MVBP2	Match Value for Bit Plane 2 collision
00	MVBP1	Match Value for Bit Plane 1 collision

Extended Collision Control. This register controls when bitplanes 7&8 are included in collision detection, and their required CLXCON2 10EW state if included.
**** BITS INITIALIZED BY RESET ****

	FUNCTION	DESCRIPTION
15-08	-	unused
07	ENBP8	ENable Bit Plane 8 (Match req'd for collision)
06	ENBP7	ENable Bit Plane 7 (Match reg'd for collision)
05-02	-	unused
01	MVBP8	Match Value for Bit Plane 8 collision
00	MVBP7	Match Value for Bit Plane 7 collision

NOTE: Disabled Bit Planes cannot prevent collisions. Therefore if all Bit Planes are disabled, collisions will be continuous, regardless of the match values.

This address reads (and clears) the collision detection register. The bit assignments are below

NOTE: Playfield 1 includes all odd numbered enabled bitplanes (BP1,BP3,BPS,BP7) Playfield 2 includes all even numbered enabled bitplanes (BP2,BP4,BP6,BP8)

BIT #	COLLISIONS REGISTERED
15 14 12 10 08 07 05 03 02 00 00	unused Sprite4 (or 5) to Sprite 6(or 7) Sprite2 (or 3) to Sprite 6(or 7) Sprite2 (or 3) to Sprite 4(or 5) Sprite0 (or 1) to Sprite 4(or 5) Sprite0 (or 1) to Sprite 4(or 5) Sprite0 (or 1) to Sprite 2(or 3) Playfield 2 to Sprite 6 (or 7) Playfield 2 to Sprite 4 (or 5) Playfield 2 to Sprite 2 (or 3) Playfield 2 to Sprite 2 (or 3) Playfield 1 to Sprite 6 (or 7) Playfield 1 to Sprite 6 (or 7) Playfield 1 to Sprite 4 (or S) Playfield 1 to Sprite 2 (or 3) Playfield 1 to Sprite 2 (or 3) Playfield 1 to Sprite 2 (or 3)

COLORxx 180-1BE W COLOR table xx

R

There are thirty-two (32) of these registers (xx=00~31) and together with the banking bits they address the 256 locations in the Color Palette. There are actually 2 sets of color registers, selection of which is controlled by the LOCT register bit. When LOCT=0, the 4 MSB of RED,GREEEN, and BLUE video data are selected along with the ZD bit for Genlocks. The low-order set of registers is also selected simultaneously, so that the 4 bit values are automatically extended to 8 bits. This provides compatibility with old software. If the full range of palette values are desired, then LOCT can be set high and independent values for the 4 LSB of RED,GREEN, and BLUE can be written. The low-order color registers do not contain a transparency(T) bit. The Table below shows the color register bit usage.

BIT *	15,1	14,	13,1	L2,	11,	10,	,09,	,08,	07,	06	,05,	,04,	03	,02	,01,	,00	
LOCT=0	Т	Х	Х	Х	R7	R6	RS	R4	G7	G6	GS	G4	В7	В6	B5	В4	
LOCT=1	Х	Х	Х	Х	R3	R2	R1	R0	G3	G2	G1	GO	В3	В2	В1	HO	
T = TRA	NSPAI	REN	CY	R	= F	RED	C	5 =	GREEN	1	В =	= BLUI	Ξ	X =	= U1	IUSED	
T of CO	LORO	сt	hru	COL	OR31	se	ets	ZD	pin H	II V	vher	n colo	or :	is s	sele	ected	

in all video modes.

DIWHICH 1E4 W Display Window upper bits - start/stop

This is an added register for the ECS chips, allowing larger display window start & stop ranges. DIWSTART/DIWSTOP set bit#13, while bits #12,11,5,4,3 are reset. If DIWHIGH is written subsequent to DIWSTART and DIWSTOP then these horrizontal bit values are overridden.

13 12 11 HIO HI HO 06 OS 04 H10 H1 H0 Bit# 15 14 10 09 08 07 03 02 01 Use Х Х У У У х У V V (stop) (start)

Don't care bits (x) should always be set to 0 to maintain upwards compatibility. ALICE bits (y) are defined in a separate document. Hi values define a 70nS increment and HO values define a 35nS increment.

DIWSTOP 090 W Display Window Stop horiz. bits DIWSTRT 08E W Display Window Start horiz. bits

These registers control the Display Window size & position, by locating the beginning & end of the horizontal display line .

Bit# 15 14 13 12 11 iO 09 08 07 06 OS 04 03 02 01 00

Use у у у у у у у у н9 н8 н7 н6 нS н4 н3 н2

Don't care bits (x) should always be set to 0 to maintain upwards compatibility. ALICE bits (y) are defined in a separate document. In all 3 display window registers, horizontal bit positions have been renamed to reflect HIRES pixel increments, eg. what used to be called HO is now referred to as H2.

FMODE 1FC W Fetch Mode

This register controls the fetch mechanism for sprites and bitplanes

BIT#	FUNCTION	DESCRIPTION
15	SSCAN2	global enable for sprite scan- doubling
14	BSCAN2	enables use of 2nd P/F modulus on an alternate line basis to support bitplane scan doubling.
13-04	х	unused)
03 02 01 00	SPAGEM SPR32 BPAGEM BPL32	Sprite Page Mode (double CAS) Sprite 32 Bit Wide Mode Bitplane Page Mode (double CAS) Bitplane 32 Bit Wide Mode

BPAGEM BPL32	Bitplane Fetch Increment	Memory Cycle	Bus Width
0 0	by 2 bytes(as before)	normal CAS	16
0 1	by 4 bytes	normal CAS	32
1 0	by 4 bytes	double CAS	16
1 1	by 8 bytes	double CAS	32
SPAGEM SPR32	Sprite Fetch Increment	Memory Cycle	Bus Width
0 0	by 2 bytes (as before)	normal CAS	16
0 1	by 4 bytes	normal CAS	32
1 0	by 4 bytes	double CAS	16
1 1	by 8 bytes	double CAS	32

HBSTOP 1C6 W Horizontal STOP position HBSTRT 1C4 W Horizontal START position

> Bits 7-0 contain the stop and start positions, respectively, for programmed horizontal blanking in 280nS increments. Bits 10-8 provide a fine position control in 35nS increments.

BIT#	FUNCTION	DESCRIPTION
15-11	x	(unused)
i0	H2	140nS
09	Hi	70nS
08	HO	35nS
07	H10	35840nS
06	H9	17920nS
OS	H8	8960nS
04	H7	4480nS
03	H6	2240nS
02	H5	1120nS
01	H4	560nS
00	H3	280nS

JOY0DAT	00A	R	JOYstick/mouse	0	DATa
JOYldat	00C	R	JOYstick-mouse	1	DATa

These addresses each read a pair of 8 bit mouse counters. 0=left controller pair, 1=right controller pair (4 counters total). Each counter is clocked by 2 of 8 signals from the MDAT serial stream. Bits 0 and 1 of each counter reflect the state of the 2 associated mouse controller port pins, allowing these pins to double as joystick switch inputs. These 8 signals are the first 8 signals shifted into LISA, preceding the optional LISAID configuration bits.

Mouse	counter usage:	
Bit #	15 14 13 12 11 10 09 08	07 06 OS 04 03 02 01 00
0dat	Y7,Y6,Y5,Y4,Y3,Y2,Y1,Y0	X7,X6,X5,X4,X3,X2,X1,X0
1DAT	Y7,Y6,Y5,Y4,Y3,Y2,Y1,Y0	X7,X6,X5,X4,X3,X2,X1,X0

The following Table shows the Mouse/Joystick port pin usage. The pins (and their functions) are sampled once every 16 bus cycles, and shifted into the LISA chip during the clock times shown in the Table. This Table is for reference only, and should not be needed by the programmer. NOTE: The joystick functions are all "active low" at the port pins.

CONN	JOYSTICK	MOUSE	PIN	SERIAL	SAMPLE
PIN	FUNCTION	FUNCTION	NAME	POSITIO	N ON
L1	FORWARD*	Y	MOV	15	CCK hi
LЗ	LEFT*	YQ	MOV	14	CCK io
L2	BACK*	X	MOH	13	CCK hi
L4	RIGHT*	XQ	MOH	12	CCK io
R1	FORWARD*	Y	Mlv	11	CCK hi
R3	LEFT*	YQ	MlV	10	CCK io
R2	BACK*	X	MlH	9	CCK hi
R4	RIGHT*	XQ	MlH	8	CCK io

NOTE: serial positions listed are MSB first

Mouse Counters. The LEFT and RIGHT joystick functions (active high) are directly available on the Y1 and X1 bits of each counter. In order to recreate the FORWARD and BACK joystick functions; however, it is necessary to (exclusive OR) the lower two bits of each counter. This is illustrated in the following table.

To Detect	Read these Counter Bits
Forward	Y1 xor YO (BIT#09 xor BIT#08)
Left	Y1
Back	X1 xor XQ (BIT#01 xor BIT#00)
Right	X1

W JOYTEST 036 Write to all 4 Joystick-mouse counters at once. Mouse-counter write test data.

BIT#	15,14,13,12,11,10,09,08	07,06,05,04,03,02,01,00
0DAT	Y7,Y6,Y5,Y4,Y3,Y2,xx xx	X7,X6,X5,X4,X3,X2,xx,xx
1DAT	Y7,Y6,Y5,Y4,Y3,Y2,xx xx	X7,X6,X5,X4,X3,X2,xx xx

LISAID 07C R Lisa/Denise revision level (formerly DENISEID)

The 8 LSB of this register identify the chip revision. The early Denise revision levels do not have this register, so whatever was previously written to the data bus on the previous access will still be there during this read cycle. ECS DENISE(8373Rx) returns hex (FC) while prototype 8369Rx returned hex (FE). LISA returns hex (F8).

The 8 low-order bits bits are encoded as follows:

BIT# Description

- Lisa/Denise/ECS Denise Revision level(decrement to 7-4 bump revision level, hex F represents Oth rev. level)
- maintain as a 1 for future generation
- 3 2 When low indicates AA feature set(LISA)
- 1 When low indicates ECS feature set (LISA or ECS Denise)
- 0 maintain as a 1 for future generation

The 8 MSB are loaded by the 8 MSB shifted into the mouse serial port. These are intended for configuration jumpers on the mother board.

SPRxPOS 140

Sprite x Vert~Horiz start position data. W

- 148 150
- 158
- 160

168

- 170
- 178

BIT #	SYM	FUNCTION
15-08 07-00	У SH1O-SH3	Sprite horizontal start value. Low-order 3 bits are in SPRxCTL register below. If SSCAN2 bit in FMODE is set, then disable SH10 horizontal coincidence detect. This bitis then free to be used by ALICE as an individual scan double enable.
	142 W 14A 152 15A 162 16A 172 17A	Sprite x Vert stop position and control data. These two (2) registers work together as position, size and feature Sprite control registers. They are usually loaded by the Sprite DMA channel, during horizontal blanking, however they may be loaded by either processor at any time (writing this address disables Sprite horizontal comparator circuit).
BIT # S	SYM	FUNCTION
07 7 06-05 5	Y ATT Y	Sprite attach control bit (odd Sprites only)
	SH1	Start horiz. value, 70nS sprite position bit Start
02-01 y	SHO Y	horiz. value, 35nS sprite position bit
00 5	SH2	Start horiz. value, 140nS sprite position bit.
SPRxDATA	144 W 14C 154 15C 164 16C 174 17C	Sprite x image data register A.
SPRxDATB STREQU STRVBL		Sprite x image data register B. These 2 registers buffer the Sprite image data. They are usually loaded by either processor at any time. When horizontal coincidence occurs the buffers are dumped into shift registers and serially output to the display, MSB is the first pixel output. NOTE: Writing to the DATA buffer enables (arms) the sprite. Writing to the SPRxCTL register disables the Sprite. If enabled, data in the DATA and DATB buffers will be output whenever the beam counter equals the Sprite horizontal position value in the SPRxPOS register. Strobe for horiz. reset with VB and EQU.
STRHOR STRLONG	03C S 03E S	Strobe for horiz. reset Strobe for long horiz. line(228 CC)
	On	e of the first 3 strobe addresses above is

One of the first 3 strobe addresses above is placed on the RGA bus during the first refresh time slot. The STRLONG is used during the second refresh time slot of every other line, to identify lines with long counts (228). There are 4 refresh time slots, and any not used for strobes will leave a null (FF) address on the RGA bus.

VHPOSW	02	2C	wv	√rit	te v	vert	z./ł	nori	z.	bea	m po	osit	cior	ı			
Bit #	15	14	13	12	11	10	09	80		07	06	05	04	03	02	01	00
USE	У	У	У	У	У	У	У	У		н10	Н9	Н8	H7	Нб	Н5	H4	Н3

H10 thru H3 allow the programmer to move the horizontal beam position in 280ns increments. This is primarily used for test purposes.

2.2 PIN DESCRIPTION

PIN NAME	PIN NUMBER	PIN TYPE	SIGNAL DESCRIPTION
D0 D31	59-82 84 2-8	IO	DATA BUS (0:31) - 32 bit bidirectional system databus.If BPWIDE and SPWIDE register bits are low, only D31~D16 are used.
RGA1 of	12-19	I	RGA Address inputs - sampled on falling edge
DC30			CCK .
RGA8 WIDE	11	0	Goes HI when 32 bit bus is required.
MDAT MLD SCLK	20 21 22	I 0 0	Mouse data input - 16 bits of serial data is accepted here from an external shift register running at 3.57MHz. Data transitions should occur at rising edge of CCK.
			Mouse data shift/load - signals external shift register to reload. Signal is low during low half of CCK every 16 cycles. MLD and MDAT signals are compatible with use of a 'LS166.
			ALICE clock synchonization pulse - falling edge of this signal causes ALICE CCK (Cl) to be synchronized with LISA's internal CCK. This allows jitter-free timing between ALICE's HSYNC/VSYNC and LISA's analog video.
C140	23	CO	14MHz clock output - sent to ALICE to generate her internal clock phases (C1,C2,C3,C4), as well as C7M,CDAC_, and CCK
RST_	24	I	System Reset - when low,bits in all registers new for ECS or LISA are cleared: BPLCON3, BPLCON4,FMODE, CLXCON2,DIWHIGH. Also LISA's clock generator is reset to a known state.
C28M	25	CI	Master clock for LISA. All internal video timebases as well as external video timing are derived from this clock. ALICE is synchronized to this clock as well(via C140).
SOG	26	0	Sync-On-Green - goes high when SOG bit in BPLCON3 is set. For proper operation, ALICE should send a positive composite sync.
BLANK	27	0	Blanking - controls blanking pedastal and inhibition of RGB guns during blanking intervals. NOTE: RGB outputs are free to wiggle during blanking interval defined by this pin allowing binking of analog RGB while non-standard display devices are being used.
ZD	28	0	Zero-Detect – active high signal used to control transparency in an external genlock device.

R0-R7	48-52 54-55 57		Red,green, and blue gun outputs, respectively. R7,G7, and B7 are the MSB.
G0-G7	39-42 44-47		
B0-B7	29 31-32 34-38	2	
C28OUT	43	0	Buffered 28MHz clock out used to synchronize digital video output stream.
BRST	58	0	Burst Window output - occurs at the beginning of NTSC horizontal lines to qualify an externally generated chroma clock. This window is inhibited during equalization lines
CAS	9	I	Data Bus Strobe - when in fast-page mode, data bus is latched during both rising edges of CAS_ resulting in two data fetches per memory cycle.
CCK LISA	10	CI	Color Clock input - 3.57MHz clock used by
LISA			to strobe RGA addresses, non-page-mode data, and mouse serial input. This clock is considered to be asynchronous to the video stream.
VSS	1 33 53	P	Ground - these should be tied to a common ground plane.
VDD	30 56 83		+5V Supply - these should be tied to the main PCB power plane.

3.1 ABSOLUTE MAXIMUM RATINGS

Stresses above those listed may cause permanent damage to the circuit. Functional operation of the device at these or any conditions other than those indicated in the operating conditions of this specification is not implied. Exposure to the maximum ratings for extended periods may adversely affect device reliability.

characteristic	min	max	units
3.1.1ambient temperature under 1 3.1.2storage temperature 3.1.3applied supply voltage 3.1.4applied output voltage 3.1.5applied input voltage		+125 +150 +7.0 +5.5 +7.0	deg. c. deg. c. volts volts volts
3.1.6power dissipation 3.1.7output current(1 pin at a	time) -	$1.5 \\ -100$	watt +100 mA

3.2 OPERATING CONDITIONS

All electrical characteristics are specified over the entire range of the operating conditions unless specifically noted. All voltages are referenced to Vss = 0.0V.

Condit	cion	Min	Max	Units
3.2.1	Supply voltage (Vcc)	4.75	5.25	volts
3.2.2	Free air temperature	0	70	Deg. C.

3.3 INTERFACE CHARACTERISTICS

Characteristic	Symbol	Min	Max	units	Conditions Note
3.3.1 Input high level	Vih	2.0	Vcc+0	.3volts	(I, IO)
3.3.2 Input low level	Vil	-0.3	0.8	volts	(I,IO)
3.3.3 Data Out high level	Voh	.7 *V	CC	volts	Ioh = -40uA (IO, DO)
3.3.4 Data Out low level	Vol	0.4		volts	Iol = +800uA(IO,DO)
3.3.5 Video Out high level	. Voh	. 7*V	CC	volts	loh = -20uA (VO)
3.3.6 Video Out low level	. Vol	0.4		volts	Iol = +400uA(VO)
3.3.5 Input current	Iin	0.25	1.0	mA	Vin=1.4V (I)
3.3.6 Tristate Out current	: Iio	0.25	1.0	mA	Vio=1 . 4V (IO)
					(Deselected)
3.3.7 Supply current	Icc		400	mA	Outputs open (P)
					(Vcc = 5.25V)

(I) input pins CAS_,CCK,RGAx,MDAT,RS_T_,C28M
(IO) I/O pins Dx
(DO) output pins WIDE,MLD_,SCLK
(VO) output pins SOG,BLANK,ZD,Rx,Gx,Bx,C28OUT,BRST_,C140
(P) supply pins VDD

3.4 SWITCHING CHARACTERISTICS

Switching characteristics are specified for input waveforms switching between 0.4V low level and 2.4V high level with 10%~90% rise and fall times of 5ns. Time measurements of transitions into high impedance are referenced to Vol+0.2V and Voh-0.2V levels.

Characteristic	Symbol	Min	Тур	Max	Unit Notes	Load
3.4.1 C28M period 3.4.2 C28M width lo/hi 3.4.3 C28M rise/fall 3.4.4 C28OUT period 3.4.5 C280UT wid lo/hi 3.4.6 C280UT rise/fall	tpC28M twC28M trC28M tpC280 twC280 trC280 trC280	30 15 30 15 	35 17.5 35 17.5 	10K 5 5	nSec nSec nSec nSec nSec nSec	1 1 1
3.4.7 C280UT prop. Dly	tdC280	0	-	20	nSec	1
(reference: C28M 3.4.8 C140 period 3.4.9 C140 width lo/hi 3.4.10 C140 rise/fall 3.4.11 C140 prop.delay (reference: C14M	tpCl40 twC140 trC140 tdC140	60 30 0	70 35 	 5 20	nSec nSec nSec nSec	1 1 1 1
3.4.12 CCK period 3.4.13 CCK rise/fall 3.4.14 CAS period 3.4.15 CAS_ rise/fall	tpCCK trCCK tpCAS trCAS_	240 240 	280 280 	10K 10 10K 10	nSec (tpC28 nSec nSec nSec nSec	
3.4.16 SCLK period 3.4.17 SCLK width hi 3.4.18 SCLK rise/fall 3.4.19 SCLK prop.delay (reference: C140	tdSCLK	240 65 0	280 70 	 5 20	nSec nSec nSec nSec	3333
3.4.20 MLD period 3.4.21 MLD width io 3.4.22 MLD rise/fall 3.4.23 MLD prop. delay	tpMLD_ twMLD_ trMLD_ tdMLD_	3840 240 0	4480 280 	 5 25	nSec nSec nSec nSec	3 3 3 3 3
(reference: C140 3.4.24 MDAT setup time	tsMDAT	15			nSec	
	thMDAT	15			nSec	
(reference: C140 3.4.26 RGA setup (reference: CCK f	tsRGAx	30			nSec	
3.4.27 RGA hold	thRGAx	30			nSec	
(reference: CCK f 3.4.28 WIDE prop.delay	tdWIDE	0		30	nSec	3
(reference: CCK r 3.4.29 Dx out dly	tdDxo	0		90	nSec	2
(reference: CCK f 3.4.30 Dx out hold	thDxo	10			nSec	2
(reference: CCK r 3.4.31 Dx inp setup	tsDxi	20			nSec	
(reference: CAS_r 3.4.32 Dx_inp hold	thDxi	20			nSec	
(reference: CAS_r 3.4.33 RST_ setup	tsRST	10			nSec	
(reference: C28M 3.4.34 RST_ hold	thRST	10			nSec	
(reference: C28M 3.4.35 video out skew	tdVID	-10	0	10	nSec Rx,Gx,I	
(reference: C280 3.4.36 SOG prop. delay (reference: CCK r	tdS_0G			280	BLANK,ZD,BR nSec	1

Loading:	1.	30pF + 1LS_TTL	(1 x 400uA	source)
-	2.	100pF+ 2LS TTL	(2 x 400uA	source)
	3.	50pF + 2LS TTL	(2 x 400uA	source)

4.1 MARKING

Parts shall be marked with Commodore part number, manufacturers identification and EIA data code. Pin 1 shall be identified.

4.2 PACKAGING

The circuit shall be packaged in a standard plastic or ceramic 84 pin leaded chip carrier.